Abstract:
A portable radio receiver and a method of operating the radio receiver during Standby Mode is provided. The method comprises deactivating at least part of a receive path of a receiver until the start of a data-detection time interval in a frame in the event that estimated values of predetermined characteristics of a signal received by the receiver during the frame are within corresponding thresholds. The predetermined characteristics are affected by pre-conditioning functions performed on the receiver prior to the start of the data-detection time interval.
Abstract:
In a receiver having at least two fingers, the fingers tracking at least one path of a multipath channel, a method includes the steps of forming a finger block of at least two of the two fingers and jointly tracking the fingers of said finger block. The step of jointly tracking includes the steps of generating direction metrics of each of a set of possible directions of joint movement of the fingers of the finger block, selecting one of the direction metrics according to a predetermined criterion, and moving the fingers of the finger block in the directions indicated by the selected direction metric.
Abstract:
The present invention is a channel estimator based on the values of received data and on a priori probabilities only of received symbols. The channel estimator includes a symbol probability generator, a noise variance estimator and a channel tap estimator. The symbol probability generator generates a priori probabilities only of transmitted symbols found in the received signal(s). The noise variance estimator estimates at least one noise variance corrupting the received signal(s). The channel tap estimator generates channel estimates from the received signal(s), the a priori probabilities and the noise variance(s).
Abstract:
A method for communication includes receiving in a receiver signals, which include one or more dedicated reference signals and are transmitted from a transmitter over a communication channel in multiple blocks. The signals in each block, including the dedicated reference signals, are transmitted on a respective group of subcarriers over a respective time interval and are precoded using a respective precoding scheme that maps the signals onto multiple antenna ports of the transmitter. One or more parameters of the communication channel are estimated over the dedicated reference signals included in two or more of the blocks whose respective precoding schemes do not differ from one another. The signals are decoded based on the estimated parameters.
Abstract:
A method for communication includes receiving in a receiver signals, which include one or more dedicated reference signals, that are transmitted from a transmitter over a communication channel in multiple blocks. The signals in each block, including the dedicated reference signals, are transmitted on a respective group of subcarriers over a respective time interval and are precoded using a respective precoding scheme that maps the signals onto multiple antenna ports of the transmitter. Based on the received signals, feedback is computed in the receiver with respect to the communication channel in each of multiple spectral sub-bands, and the feedback for the multiple spectral sub-bands is reported to the transmitter. One or more parameters of the communication channel are estimated jointly over the dedicated reference signals included in each of the spectral sub-bands for which the feedback is reported. The signals are decoded based on the estimated parameters.
Abstract:
Some of the embodiments of the present disclosure provide a method comprising selecting, by a user equipment (UE), a preferred interference precoding matrix from a plurality of candidate precoding matrices included in a codebook; and transmitting, by the user equipment to a communication node, a preferred interference precoding matrix index (PMI) corresponding to the preferred interference precoding matrix included in the codebook. Other embodiments are also described and claimed.
Abstract:
A method for communication includes receiving at a receiver from a group of two or more transmitters multiple Radio Frequency (RF) transmission beams that alternate in time and space and include at least first and second transmission beams. The method identifies that the first transmission beam causes interference to reception of the second transmission beam. Feedback is sent from the receiver to one or more of the transmitters, so as to cause the transmitters to attenuate the first transmission beam during transmission of the second transmission beam.
Abstract:
A mobile user equipment includes a user equipment clock and a dual mode time tracker. The clock periodically wakes up the user equipment. The dual mode time tracker uses a serving cell reference signal to correct timing errors of the user equipment clock with respect to a network clock while timing errors remain minimal and otherwise uses a serving cell synchronization signal to correct timing errors of the user equipment clock. The dual mode time tracker also sets a next wakeup time as a function at least of the size of the timing errors.
Abstract:
Briefly, according to embodiments of the invention, there is provided a wireless communication system and a method to receive by a base station from a first mobile station a first chain of data symbols transmitted by at least two antennas and having a first transmit diversity, to receive from a second mobile station a second chain of data symbols transmitted by at least two antennas and having a second transmit diversity. Both first and second chains of data symbols are transmitted from the first and second mobile stations at the same time, modulated according to an Orthogonal Frequency Division Multiplexing (OFDM) scheme and encoded by a space time block codes scheme.
Abstract:
A method for signal processing in a receiver includes receiving in the receiver a Multi-User Multiple-Input Multiple-Output (MU-MIMO) signal. The MU-MIMO signal includes at least a first signal, which is precoded using a first precoding scheme and is addressed to the receiver, and a second signal, which is precoded using a second precoding scheme. An average error rate achievable in decoding the first signal in the presence of the second signal is computed. The average error rate is computed over a set of possible choices of the second precoding scheme. The first precoding scheme is selected from among a plurality of available precoding schemes so as to satisfy a criterion defined over the average error rate. The receiver sends feedback to a transmitter transmitting the first signal. The feedback depends on the selected first precoding scheme and causes the transmitter to control transmission of the first signal.