摘要:
The present disclosure provides a method of making an integrated circuit (IC). The method includes forming an electric device on a front side of a substrate; forming a top metal pad on the front side of the substrate, the top metal pad being coupled to the electric device; forming a passivation layer on the front side of the substrate, the top metal pad being embedded in the passivation layer; forming an opening in the passivation layer, exposing the top metal pad; forming a deep trench in the substrate; filling a conductive material in the deep trench and the opening, resulting in a though-wafer via (TWV) feature in the deep trench and a pad-TWV feature in the opening, where the top metal pad being connected to the TWV feature through the pad-TWV feature; and applying a polishing process to remove excessive conductive material, forming a substantially planar surface.
摘要:
The present disclosure provides an image sensor semiconductor device. The semiconductor device includes a substrate having a front surface and a back surface; a plurality of sensor elements formed on the front surface of the substrate, each of the plurality of sensor elements configured to receive light directed towards the back surface; and an aluminum doped feature formed in the substrate and disposed horizontally between two adjacent elements of the plurality of sensor elements and vertically between the back surface and the plurality of sensor elements.
摘要:
The present disclosure provides an image sensor semiconductor device. The semiconductor device includes a substrate having a front surface and a back surface; a plurality of sensor elements formed on the front surface of the substrate, each of the plurality of sensor elements configured to receive light directed towards the back surface; and an aluminum doped feature formed in the substrate and disposed horizontally between two adjacent elements of the plurality of sensor elements and vertically between the back surface and the plurality of sensor elements.
摘要:
An apparatus and manufacturing method thereof, wherein an integrated circuit is located in a first region of a substrate having first and second opposing major surfaces, and wherein an alignment mark is located in a second region of the substrate and extends through the substrate between the first and second surfaces. The alignment mark may protrude from the first and/or second surfaces, and/or may comprise a plurality of substantially similar alignment marks. The second region may interpose the first region and a perimeter of the substrate. The second region may comprise a scribe region.
摘要:
An image sensor device includes a semiconductor substrate having a front surface and a back surface, pixels formed on the front surface of the semiconductor substrate, and grid arrays aligned with one of the pixels. One of the grid arrays is configured to allow a wavelength of light to pass through to the corresponding one of the pixels. The grid arrays are disposed overlying the front or back surface of the semiconductor substrate.
摘要:
A new method to form an image sensor device is achieved. The method comprises forming an image sensing array in a substrate comprising a plurality of light detecting diodes with spaces between the diodes. A first dielectric layer is formed overlying the diodes but not the spaces. The first dielectric layer has a first refractive index. A second dielectric layer is formed overlying the spaces but not the diodes. The second dielectric layer has a second refractive index that is larger than the first refractive index. A new image sensor device is disclosed.
摘要:
A complementary metal oxide semiconductor field effect transistor (CMOS-FET) image sensor. An active photosensing pixel is formed on a substrate. At least one side of the pixel has a width equal to or less than approximately 3 μm. At least one dielectric layer is disposed on the substrate covering the pixel. A color filter is disposed on the least one dielectric layer. A microlens array is disposed on the color filter of the pixel, and the sum of the thickness of all dielectric layers and the color filter divided by the pixel width is equal to or less than approximately 1.87.
摘要:
The present invention is a CMOS image sensor and its method of fabrication. This invention provides an efficient structure to improve the quantum efficiency of a CMOS image sensor with borderless contact. The image sensor comprises a N-well/P-substrate type photodiode with borderless contact and dielectric structure covering the photodiode region. The dielectric structure is located between the photodiode and the interlevel dielectric (ILD) and is used as a buffer layer for the borderless contact. The method of fabricating a high performance photodiode comprises forming a photodiode in the n-well region of a shallow trench, and embedding a dielectric material between the ILD oxide and the photodiode having a refraction index higher than the ILD oxide.
摘要:
A method for making an array of photodiodes with more uniform optical spectral response for the red, green, and blue pixel cells on a CMOS color imager is achieved. After forming a field oxide on a substrate to electrically isolate device areas for CMOS circuits, an array of deep N doped wells is formed for photodiodes for the long wavelength red pixel cells. An array of P doped well regions is formed adjacent to and interlaced with the N doped wells. Shallow diffused N+ regions are formed within the P doped wells for the shorter wavelength green and blue color pixels cells. The shallow diffused photodiodes improve the quantum efficiency (QE), and provide a color imager with improved color fidelity. An insulating layer and appropriate dye materials are deposited and patterned over the photodiodes to provide the array of color pixel cells. The N and P doped wells are also used for the supporting FET CMOS circuits to provide a cost-effective manufacturing process.
摘要:
A method of fabricating a stripe photodiode element, for an image sensor cell, has been developed. The stripe photodiode element is comprised of a narrow width, serpentine shaped, lightly doped N type region, in a P well region. The use of the serpentine shaped region results in increased photon collection area, when compared to counterparts fabricated using non-serpentine shaped patterns. In addition the use of the serpentine shaped N type regions allow both vertical, as well as horizontal depletion regions, to result, thus increasing the quantum efficiency of the photodiode element. The combination of narrow width, and a reduced dopant level, for the N type serpentine shaped region, result in a fully depleted photodiode element.