Abstract:
System and method embodiments are provided for a subframe structure for wideband LTE. In an embodiment, a method in a communications controller for transmitting a packet to a wireless device includes signaling a UL/DL configuration to the wireless device, wherein the UL/DL configuration indicates a quantity of uplink microframes in a group of microframes, wherein each subframe includes a plurality of microframes, and wherein the group of microframes includes a consecutive sequence downlink microframes and a consecutive sequence of uplink microframes. The packet is transmitted to the wireless device in one downlink microframe. The method further includes receiving an acknowledgement of the packet in an uplink microframe, wherein the uplink microframe is determined in accordance with the one downlink microframe and the uplink-downlink configuration, and wherein the acknowledgement is received in a same subframe as a subframe utilized for transmitting the packet to the wireless device.
Abstract:
In one embodiment, a method for delay scheduling includes determining whether a communications controller has information for a machine type communication (MTC) device and determining a first subframe to transmit a downlink control information (DCI) message on when the communications controller has information for the MTC device. The method also includes transmitting, by the communications controller to the MTC device, the first subframe including the DCI message and the information in accordance with the first subframe.
Abstract:
A device is configured to perform a method of device-to-device (D2D) communication in a wireless communication network in accordance with a Long Term Evolution (LTE) standard. The method includes entering an RRC-Idle state or an RRC-Connected state. The method also includes transmitting, in the RRC-Idle state or RRC-Connected state, a D2D discovery signal for receipt by at least one second device in the network. The method further includes receiving, in the RRC-Idle state or RRC-Connected state, at least one D2D discovery signal from the at least one second device in the network.
Abstract:
Embodiments are provided reducing interference between cellular and direct mobile communication (DMC) links in wireless systems. In embodiment, a method performed by a network controller includes sending, to a second network controller, information of resources for a first set of DMC links between DMC user equipments (UEs). The first set of DMC links is associated with the network controller. The method further includes receiving second information of resources for a second set of DMC links associated with the second network controller. The network controller coordinates with the second network controller the allocation of network resources for the first set of DMC links between the DMC UEs. The network resources comprise cellular and DMC resources.
Abstract:
System and method embodiments are provided for network adaption and utilization of a discovery signal (DS). In an embodiment, a method in a UE for communicating in a wireless network includes receiving a parameter(s) from a network controller, wherein the parameter provides the UE with an activation time frame within which the UE can expect to receive a common reference signal (CRS) from a network component, a deactivation time frame within which the UE is not to expect to receive the CRS, and information for receiving and processing a DS from the network component; receiving the DS from the network component, wherein a structure and format of the DS conforms to the parameter received by the UE; refraining from attempting to perform CRS based procedures when the CRS is not received; and performing one of synchronization, cell identification, and DS based radio resource management (RRM) measurements according to the DS.
Abstract:
A device is configured to perform a method of wireless communication in a wireless communication network. The method includes receiving, from a communications controller, a device-to-device (D2D) subframe configuration to communicate with one or more second wireless devices, the subframe configuration indicating one or more subframes in which to transmit a D2D signal or receive one or more D2D signals. The method also includes receiving, from the communications controller, scheduling information to transmit a first signal to the communications controller on a subframe indicated by the D2D subframe configuration. The method further includes prioritizing the transmission of the first signal over a transmission of the D2D signal or a reception of the one or more D2D signals, and transmitting the first signal.
Abstract:
A method for providing user equipment access to millimeter wave stations through a microwave station includes receiving an indication of millimeter wave stations operating within a microwave coverage area of a microwave station. In a microwave band, information associated with the millimeter wave stations is broadcasted to user equipment in the microwave coverage area. A request is sent to the millimeter wave stations to transmit configuration signals over a microwave band. An instruction is transmitted over the microwave band to the user equipment to perform proximity measurements of the configuration signals. According to the proximity measurements, a request is sent to a particular millimeter wave station to transmit beamforming signals over a millimeter wave band. An instruction is transmitted over the microwave band to the user equipment to perform beamforming measurements of the beamforming signals. According to the beamforming measurements, the user equipment is switched to millimeter wave operation.
Abstract:
Embodiments are provided herein for determining a synchronizing master for device-to-device (D2D) communication in a cellular network environment. In an embodiment, a user equipment (UE) receives a discovery signal comprising a timing reference, and determines a transmitter of the discovery signal. In accordance with the determination of the transmitter of the discovery signal, the UE performs one of synchronizing to the timing reference in the discovery signal and transmitting a second discovery signal. The UE performs the synchronizing to the timing reference if the transmitter of the discovery is a cellular network. Alternatively, the UE transmits the second discovery signal upon determining that the transmitter of the discovery signal is a second UE that is out of coverage of a cellular network.
Abstract:
In certain embodiments, a method includes, by a first mobile device, obtaining a data packet and determining, from a first set of resources, control resources for transmitting scheduling information associated with the data packet. The control resources include a physical sidelink control channel (PSCCH). The method includes determining, by the first mobile device from a second set of resources, acknowledgement (ACK)/negative acknowledgement (NACK) resources associated with the data packet and related to the control resources. The scheduling information includes transmission information for transmitting the data packet and an indication of the ACK/NACK resources. The method includes transmitting, by the first mobile device to a second mobile device, the scheduling information on the control resources and the data packet on a set of resources indicated by the transmission information and listening, by the first mobile device, for an ACK/NACK transmitted by the second mobile device on the ACK/NACK resources.
Abstract:
A method for transmitting resource allocation information to a wireless node in a communications system includes selecting a search space from one of a first search space and a second search space, the first search space associated with a first set of control channel parameters and the second search space associated with a second set of control channel parameters. The method also includes modulating the first control information, and mapping the modulated first control information onto the selected search space in a first subframe, where at least one of modulating the first control information and mapping the modulated first control information is according to a selected set of control channel parameters associated with the selected search space. The method further includes transmitting the first subframe to the wireless node, and transmitting a first parameter indicator identifying the selected set of control channel parameters to the wireless node.