Abstract:
A method of reducing parasitic capacitance includes providing a starting semiconductor structure, the starting semiconductor structure including a semiconductor substrate with fin(s) thereon, the fin(s) having at least two dummy transistors integrated therewith and separated by a dielectric region, the dummy transistors including dummy gates with spacers and gate caps, the fin(s) having ends tucked by the dummy gates. The method further includes removing the dummy gates and gate caps, resulting in gate trenches, protecting area(s) of the structure during fabrication process(es) where source/drain parasitic capacitance may occur, and forming air-gaps at a bottom portion of unprotected gate trenches to reduce parasitic capacitance. The resulting semiconductor structure includes a semiconductor substrate with fin(s) thereon, FinFET(s) integral with the fin(s), the FinFET(s) including a gate electrode, a gate liner lining the gate electrode, and air-gap(s) in gate trench(es) of the FinFET(s), reducing parasitic capacitance by at least about 75 percent as compared to no air-gaps.
Abstract:
Bulk semiconductor devices are co-fabricated on a bulk semiconductor substrate with SOI devices. The SOI initially covers the entire substrate and is then removed from the bulk device region. The bulk device region has a thicker dielectric on the substrate than the SOI region. The regions are separated by isolation material, and may or may not be co-planar.
Abstract:
A three-dimensional transistor includes a channel with a center portion (forked channel) or side portions (narrow channel) removed, or fins without shaping, after removal of the dummy gate and before a replacement metal gate is formed.
Abstract:
Semiconductor devices and methods for forming the devices with spacer chamfering. One method includes, for instance: obtaining a wafer with at least one source, at least one drain, and at least one fin; forming at least one sacrificial gate with at least one barrier layer; forming a first set of spacers adjacent to the at least one sacrificial gate; forming at least one second set of spacers adjacent to the first set of spacers; and etching to remove a portion of the first set of spacers above the at least one barrier layer to form a widened opening. An intermediate semiconductor device is also disclosed.
Abstract:
A semiconductor structure includes a semiconductor substrate, at least one first elongated region of n-type or p-type, and at least one other second elongated region of the other of n-type or p-type, the first and second elongated regions crossing such that the first elongated region and the second elongated region intersect at a common area, and a shared gate structure over each common area.
Abstract:
A method as set forth herein can include patterning using a first mask an isolation trench at a sidewall to sidewall isolation (SSI) region of a semiconductor structure having a substrate including fins and a main body section, filling the isolation trench at a SSI region with dielectric material, using a second mask to pattern an isolation trench at a single diffusion break (SDB) region, filling the isolation trench at the SDB region with dielectric material, and recessing dielectric material.
Abstract:
In one aspect there is set forth herein a semiconductor device wherein a contact conductive layer and a gate conductive layer include a common conductive material. In one aspect a source/drain region contact conductive layer of an nFET, and a gate conductive layer of a gate of the nFET can be fabricated to include an n material. In one aspect a source/drain region contact conductive layer of a pFET, and a gate conductive layer of the pFET can be fabricated to include an p material.
Abstract:
A starting non-planar semiconductor structure is provided having a semiconductor substrate, raised semiconductor structures coupled to the substrate, and a layer of isolation material(s) surrounding the raised structures. The isolation layer is recessed to expose about 40 nm to about 70 nm of the raised structures. The increased height of the exposed raised structures, compared to conventional, allows for a taller gate and taller spacers, which reduces undercut under the spacers and short-channel effects from the loss of isolation material in fabrication.
Abstract:
The present disclosure relates to semiconductor structures and, more particularly, to a single diffusion cut for gate structures and methods of manufacture. The structure includes: a plurality of fin structures; a plurality of gate structures extending over the plurality of fin structures; a plurality of diffusion regions adjacent to the each of the plurality of gate structures; a single diffusion break between the diffusion regions of the adjacent gate structures; and a liner separating the single diffusion break from the diffusion regions.
Abstract:
The present disclosure relates to semiconductor structures and, more particularly, to single diffusion cut for gate structures and methods of manufacture. The structure includes a single diffusion break extending into a substrate between diffusion regions of adjacent gate structures, the single diffusion break filled with an insulator material and further comprising an undercut region lined with a liner material which is between the insulator material and the diffusion regions.