Segmented bar conductors for electric machines

    公开(公告)号:US11323001B2

    公开(公告)日:2022-05-03

    申请号:US16460138

    申请日:2019-07-02

    Abstract: Presented are segmented hairpin bar conductors for electric machines, methods for making/using such segmented bar conductors, electromagnetic motors using such segmented bar conductors, and vehicles equipped with an induction motor generator unit using segmented hairpin bar conductors. An electric machine includes a stator that defines multiple circumferentially spaced, radially elongated stator slots. A rotor is located adjacent and movable with respect to the stator. One or more permanent magnets are mounted to the rotor, and one or more U-shaped hairpin windings are mounted to the stator in juxtaposed spaced relation to the magnet(s). Each hairpin winding is formed from an array of collimated, electrically conductive wires that are bundled together into a unitary bar conductor. The segmented hairpin winding has a pair of hairpin legs, each of which adjoins and projects from a respective end of a hairpin crown. Each hairpin leg inserts into a respective one the stator slots.

    ELECTRIC MOTOR ASSEMBLY USING POLYMER-ONLY FASTENING AND METHODS OF MANUFACTURING THE SAME

    公开(公告)号:US20220115922A1

    公开(公告)日:2022-04-14

    申请号:US17066520

    申请日:2020-10-09

    Abstract: An electric motor assembly includes a housing having a generally cylindrical inner surface defining a generally cylindrical cavity within the housing, a stator operatively disposed within the generally cylindrical cavity, the stator including a plurality of stacked laminations wherein each lamination has an outer circumferential edge and a plurality of finger elements extending inward, and a layer of polymer disposed between a generally cylindrical outer surface of the stator and the generally cylindrical inner surface of the housing, such that the stator is fastened to the housing by the polymer. A method of manufacturing the electric motor assembly includes disposing a stator within a housing such that a gap is defined between the stator and the housing and the stator is not directly connected to the housing, and substantially filling the gap with a polymer capable of fastening the stator to the housing by only the polymer.

    SYNCHRONOUS MACHINE HAVING HYBRID ROTOR EXCITATION

    公开(公告)号:US20220103049A1

    公开(公告)日:2022-03-31

    申请号:US17038757

    申请日:2020-09-30

    Abstract: A synchronous machine having a hybrid rotor excitation. The synchronous machine includes a rotor having a plurality of permanent magnets and electromagnets embedded within a rotor body. The permanent magnets produces a constant magnet field having a magnetic axis along a direct axis (D-axis). The electromagnets produces a variable magnetic field along a magnetic axis offset from the D-axis, preferable substantially orthogonal to the D-axis. The plurality of permanent magnets are separated from the electromagnets by a rotor air-gap. The plurality of permanent magnets includes inner pairs and outer pairs of permanent magnets nested in a V-shaped configuration. In another embodiment, the outer pairs of permanent magnets are replaced with outer radius electromagnets.

    Electrical system with cycloidal electric machine

    公开(公告)号:US10923987B2

    公开(公告)日:2021-02-16

    申请号:US16288336

    申请日:2019-02-28

    Abstract: An electrical system includes a cycloidal electric machine having a stator and a balanced rotor. The rotor is eccentrically positioned radially within the stator, such that the rotor moves with two degrees of freedom (2DOF). The 2DOF motion includes rotating motion about the rotor axis and orbiting motion about the stator axis. A rotor constraint mechanism constrains the motion of the rotor, such that the rotor is able to generate torque on a coupled load. Part of the rotor constraint mechanism may be integrally formed with the rotor. A coupling mechanism may be coupled to the rotor and configured to translate the 2DOF into 1DOF, i.e., rotation without orbital motion. The rotor may include mutually-coupled rotors. At least one counterweight may be connected to the rotor, e.g., externally or within the airgap. Balancing of the balanced rotor may be optionally provided via the multiple rotors and/or the counterweight(s).

    Power electronics drive for cylcoidal electric machine

    公开(公告)号:US10855217B2

    公开(公告)日:2020-12-01

    申请号:US16396075

    申请日:2019-04-26

    Abstract: An electrical system includes a power inverter module (PIM) connected to DC and AC voltage buses and having a pair of inverter phase legs, at least one of which includes a plurality of semiconductor switche. A cycloidal electric machine with plurality of electrical phases is connected to the PIM via the AC voltage bus, and has a stator and a rotor with eccentric stator and rotor axes. The rotor moves with two degrees of freedom, including rotating motion about the rotor axis and orbiting motion about the stator axis. A controller applies, for each respective phase, a phase-specific offset value to a carrier signal and to a voltage reference signal. This generates a modified carrier signal and a modified reference signal, respectively, which in turn generate a pulse width modulation (PWM) signal. The electric machine is powered via the PIM by energizing the semiconductor switches using the PWM signal.

    Cycloidal reluctance motor with rotor permanent magnets

    公开(公告)号:US10811946B1

    公开(公告)日:2020-10-20

    申请号:US16372791

    申请日:2019-04-02

    Abstract: An electrical system includes a power inverter connected to a battery and outputting a polyphase voltage, and a cycloidal reluctance machine. A machine rotor provides output torque, and is surrounded and separated from the stator by an airgap. The rotor includes permanent magnets providing a fixed-orientation rotor field. The stator includes windings proximate the permanent magnets and electrically connected to the inverter to form stator electromagnets. The rotor field augments the stator field to boost output torque. The rotor is eccentrically positioned with respect to the stator to move with two degrees of freedom (2DOF), including rotating motion and orbiting motion about a center axis of the stator. A rotor constraint mechanism constrains motion of the rotor, such that the rotor is able to generate and transmit the output torque to a coupled load in at least one of the 2DOF.

    CYCLOIDAL RELUCTANCE MOTOR WITH ROTOR PERMANENT MAGNETS

    公开(公告)号:US20200321842A1

    公开(公告)日:2020-10-08

    申请号:US16372791

    申请日:2019-04-02

    Abstract: An electrical system includes a power inverter connected to a battery and outputting a polyphase voltage, and a cycloidal reluctance machine. A machine rotor provides output torque, and is surrounded and separated from the stator by an airgap. The rotor includes permanent magnets providing a fixed-orientation rotor field. The stator includes windings proximate the permanent magnets and electrically connected to the inverter to form stator electromagnets. The rotor field augments the stator field to boost output torque. The rotor is eccentrically positioned with respect to the stator to move with two degrees of freedom (2 DOF), including rotating motion and orbiting motion about a center axis of the stator. A rotor constraint mechanism constrains motion of the rotor, such that the rotor is able to generate and transmit the output torque to a coupled load in at least one of the 2 DOF.

    ELECTRIC MACHINE CORE WITH ARCUATE GRAIN ORIENTATION

    公开(公告)号:US20200321814A1

    公开(公告)日:2020-10-08

    申请号:US16377853

    申请日:2019-04-08

    Abstract: A rotary electric machine, e.g., a cycloidal reluctance motor, includes a stator having stator teeth connected to a cylindrical stator core, and a rotor having a cylindrical rotor core. The stator core and/or rotor core are constructed of grain-oriented, spirally-wound ferrous material having a circular or annular grain orientation. The stator teeth may be constructed of grain-oriented steel having a linear grain orientation. Notches may be spaced around an inner circumferential surface of the stator core, with each stator tooth engaged with a respective notch. The rotor may be eccentrically positioned radially within the stator. The rotor core may define notches spaced around its outer circumferential surface, with salient rotor projections engaged with a respective rotor notch. The machine in such an embodiment may be a switched reluctance rotor. An electrical system using the machine and a method of manufacturing the machine are also disclosed.

Patent Agency Ranking