Mechanical performance of al-steel weld joints

    公开(公告)号:US11524358B2

    公开(公告)日:2022-12-13

    申请号:US16183453

    申请日:2018-11-07

    Abstract: A method of resistance spot welding a workpiece stack-up that includes a steel workpiece and an aluminum workpiece includes adhering an aluminum patch to faying surface of a steel workpiece, positioning an aluminum workpiece over the aluminum patch and the steel workpiece to assemble a workpiece stack-up, passing an electric current through the workpiece stack-up to create a molten aluminum weld pool, and terminating passage of the electric current to solidify the molten aluminum weld pool into a weld joint that bonds the steel and aluminum workpieces together through the aluminum patch. A workpiece stack-up having a weld joint that bonds an aluminum workpiece and a steel workpiece together through an aluminum patch is also disclosed. The weld joint establishes a bonding interface with the faying surface of the steel workpiece, and the aluminum patch is adhered to the faying surface of the steel workpiece around the weld joint.

    Improving mechanical performance of Al-steel weld joints by limiting steel sheet deformation

    公开(公告)号:US10857618B2

    公开(公告)日:2020-12-08

    申请号:US15907996

    申请日:2018-02-28

    Abstract: A method of resistance spot welding a workpiece stack-up that includes a steel workpiece and one or more aluminum workpieces involves locally stiffening the steel workpiece to resist steel workpiece deformation. The local stiffening of the steel workpiece is achieved by incorporating an electrode receiving wall into the steel workpiece along with one or more integral elevated portions of the steel workpiece that are disposed at least partially around the electrode receiving wall. The electrode receiving wall includes an electrode-contact surface and an opposed interface contact surface. During welding, a weld face of one welding electrode is pressed against the electrode-contact surface of the electrode receiving wall of the steel workpiece, and electric current is momentarily passed between that welding electrode and another welding electrode on the opposite side of the workpiece stack-up to form a weld joint that bonds to the interface contact surface of the electrode receiving wall.

    Mating electrodes for resistance spot welding of aluminum workpieces to steel workpieces

    公开(公告)号:US10766095B2

    公开(公告)日:2020-09-08

    申请号:US15442155

    申请日:2017-02-24

    Abstract: A spot weld may be formed between an aluminum workpiece and an adjacent overlapping steel workpiece with the use of opposed spot welding electrodes that have mating weld faces designed for engagement with the outer surfaces of the workpiece stack-up assembly. The electrode that engages the stack-up assembly proximate the aluminum workpiece includes a central ascending convex surface and the electrode that engages the stack-up assembly proximate the steel workpiece has an annular surface. The mating weld faces of the first and second spot welding electrodes distribute the passing electrical current along a radially outwardly expanding flow path to provide a more uniform temperature distribution over the intended spot weld interface and may also produce a deformed bonding interface within the formed weld joint. Each of these events can beneficially affect the strength of the weld joint.

    IMPROVING MECHANICAL PERFORMANCE OF AL-STEEL WELD JOINTS BY LIMITING STEEL SHEET DEFORMATION

    公开(公告)号:US20190262930A1

    公开(公告)日:2019-08-29

    申请号:US15907996

    申请日:2018-02-28

    Abstract: A method of resistance spot welding a workpiece stack-up that includes a steel workpiece and one or more aluminum workpieces involves locally stiffening the steel workpiece to resist steel workpiece deformation. The local stiffening of the steel workpiece is achieved by incorporating an electrode receiving wall into the steel workpiece along with one or more integral elevated portions of the steel workpiece that are disposed at least partially around the electrode receiving wall. The electrode receiving wall includes an electrode-contact surface and an opposed interface contact surface. During welding, a weld face of one welding electrode is pressed against the electrode-contact surface of the electrode receiving wall of the steel workpiece, and electric current is momentarily passed between that welding electrode and another welding electrode on the opposite side of the workpiece stack-up to form a weld joint that bonds to the interface contact surface of the electrode receiving wall.

Patent Agency Ranking