Abstract:
Electric heaters comprising corrosion resistant metals (CRM), and exhaust gas treatment systems incorporating the same, are provided. Exhaust gas treatment systems include selective catalytic reduction devices (SCR) disposed downstream from reductant injectors. Electric heaters can be disposed downstream from reductant injectors, and optionally contiguous with or incorporated with a catalytic composition of the SCR. CRMs resist corrosion to reductant, which includes t ammonia and/or nitrogen-rich substances capable of decomposing into ammonia, such as urea. CRMs include aluminum, chromium, iron, and one or more stabilizers. CRMs can include about 5.0% to about 7.25% aluminum, about 15% to about 25% chromium, up to about 0.30% stabilizers, and a balance comprising iron. Stabilizers can include hafnium, yttrium, and zirconium. Stabilizers can include about 0.001% to about 0.11% yttrium and about 0.001% to about 0.11% Hf.
Abstract:
An engine exhaust system includes an exhaust pipe assembly having an engine exhaust system inlet configured to receive engine exhaust and an engine exhaust system outlet. The system includes a first selective catalytic reduction (SCR) catalyst device positioned downstream in exhaust flow from the engine exhaust system inlet. The first SCR catalyst device includes a substrate with a metallic catalyst coated on the substrate. An electric heater is configured to heat the metallic catalyst. A second SCR catalyst device is positioned downstream in engine exhaust flow from the first SCR catalyst device and upstream of the engine exhaust system outlet. The first SCR catalyst device and the exhaust pipe assembly define an empty chamber between the substrate and the second SCR catalyst device. Engine exhaust flows directly from the substrate to the second SCR catalyst device through the empty chamber.
Abstract:
An integrated sensor-catalyst is disclosed for an after-treatment (AT) system used to filter an exhaust gas flow emitted by an internal combustion engine. The integrated sensor-catalyst includes a sensor element configured to detect a parameter of the exhaust gas flow. The integrated sensor-catalyst also includes a micro-catalyst element configured to filter a pollutant from the exhaust gas flow. Additionally, the integrated sensor-catalyst includes a housing configured to hold the sensor element and the micro-catalyst element and fix the micro-catalyst element relative to the sensor element such that the micro-catalyst element is arranged and maintained in the exhaust gas flow upstream of the sensor element. A vehicle including such an AT system with the integrated sensor-catalyst is also disclosed.
Abstract:
An after-treatment (AT) system for a flow of exhaust gas of an internal combustion engine includes a first AT device and a second AT device in fluid communication with and positioned in the exhaust gas flow downstream of the first AT device. The AT system also includes an exhaust passage configured to carry the exhaust gas flow from the first AT device to the second AT device. The AT system additionally includes an injector configured to introduce a reductant into the exhaust passage. The second AT device includes an inlet cone having a volute defining a spiral primary path for the exhaust gas flow into the second AT device and configured to generate a swirling motion of and turbulence in the exhaust gas flow. A vehicle employing the AT system is also disclosed.
Abstract:
In one aspect, a swirl can mixer assembly for mixing a fluid with exhaust gas exhausted from an internal combustion engine is provided. The assembly includes an inlet portion including an injection area configured to receive a fluid injector for dispensing the fluid into the exhaust gas for mixing with the exhaust gas in the mixing assembly to produce an exhaust gas/fluid mixture, an outlet portion, and an extended mixing conduit fluidly coupled between the inlet portion and the outlet portion. The extended mixing conduit is curved about at least a portion of a circumference of the outlet portion to induce a swirl in the exhaust gas/fluid mixture such that the exhaust gas/fluid mixture enters the outlet portion tangentially thereto.
Abstract:
A method is disclosed of providing a fuel efficient regeneration of an exhaust after-treatment (AT) system that includes a lean oxides of nitrogen (NOX) trap (LNT) and a selective catalytic reduction filter (SCRF) positioned downstream of the LNT. The method includes regulating a selectable position valve. The valve permits a first gas flow portion to pass through the LNT and diverts a remaining second portion of exhaust gas flow from a first passage connecting an engine and the AT system to a second exhaust passage to thereby bypass the LNT. The method also includes regulating a first device to inject fuel into the first portion of the exhaust gas flow. The injection of fuel in to the first portion of the exhaust gas flow provides fuel efficient regeneration of the LNT and promotes NOX conversion and ammonia (NH3) formation in the LNT. A system employing the method is also disclosed.