Abstract:
An AM/FM radio system for a vehicle that is selectively impedance matched to the particular tuned frequency of interest so that noise received by other frequencies does not affect the received signal. The radio system includes an HMI allowing a user to select an AM or FM radio station and a radio tuner responsive to a signal from the HMI identifying the selected radio station. The tuner tunes the radio system to the radio station, and provides a signal to the HMI identifying the radio station. The HMI places a message on a vehicle bus identifying the radio station that the radio tuner is tuned to. An antenna controller receives the message from the vehicle bus to selectively control an impedance matrix to provide impedance matching for the selected radio station frequency. The antenna controller also selectively tunes antenna radiating elements to the particular tuned frequency.
Abstract:
Systems and methods for assisting in coupling a vehicle and a trailer include at least one sensing device disposed on the vehicle. A first coupling is coupled the vehicle and a second coupling is coupled to the trailer. A controller in communication with the at least one sensing device is configured to identify a spatial location of the first coupling. The controller is also configured to determine a spatial location of the second coupling using data from the at least one sensing device. The controller may also calculate a path between the spatial location of the first coupling and the spatial location of the second coupling and convey the path for facilitating movement of the first coupling toward the second coupling.
Abstract:
Methods for establishing continuous communications between a vehicle and a mobile device using Near Field Communications (NFC), and using the NFC communication to enable application hosting on the mobile device and other features. An NFC-enabled mobile device is placed in close proximity to an NFC antenna in the vehicle, where in one embodiment the NFC antenna is integrated into a wireless charging pad for the device. Continuous wireless NFC communications are established between the mobile device and the vehicle, such that the device can serve as a controller for in-vehicle systems. Control applications on the mobile device can include driver-commanded features such as operation of windows and door locks, as well as automatic features such as navigation and collision warning. Other uses of the NFC-enabled mobile device are also disclosed, such as event-based information capture and gesture-based control.
Abstract:
A vehicle, Lidar system and method of detecting an object is disclosed. The Lidar system includes a photonic chip, and a laser integrated into the photonic chip. The laser has a front facet located at a first aperture of the photonic chip to direct a transmitted light beam into free space. A reflected light beam that is a reflection of the transmitted light beam is received at the photonic chip and a parameter of the object is determined from a comparison of the transmitted light beam and the reflected light beam. A navigation system operates the vehicle with respect to the object based on a parameter of the object.
Abstract:
A vehicle, Lidar system and method of detecting an object. The Lidar system includes an optical phase array and a mirror. The optical phase array directs a transmitted light beam generated by a laser along a first direction within a first plane. The mirror receives the transmitted light beam from the optical phase array and directs the transmitted light beam along a second direction within a second plane.
Abstract:
A thin film, flexible antenna that has particular application to be adhered to vehicle glass, where the antenna has a wideband antenna geometry and is operable to receive right-hand or left-hand circularly polarized signals from, for example, GPS and SDARS satellites. The antenna is a printed planar antenna formed to the substrate and includes a ground plane having a slot formed therein and a tuning sleeve having a vertical portion and a horizontal portion. The planar antenna further includes a radiating element positioned adjacent to the tuning sleeve and including a feed portion positioned within the slot, where the radiating element includes a first horizontal portion and a second horizontal portion extending from a vertical portion towards the vertical portion of the sleeve. The ground plane is operable to generate circularly polarized signals to be received by the radiating element where the sleeve provides phase tuning of the signals.
Abstract:
An antenna assembly including a planar antenna formed on a dielectric substrate and a frequency selective impedance surface formed on the substrate and at least partially surrounding the antenna. The frequency selective impedance surface receives surface waves propagating along the dielectric substrate generated by the antenna, where the impedance surface mitigates negative effects of the surface waves by converting the surface wave energy into leaky-wave radiation, and also possibly providing some control of the radiation gain pattern of the antenna. In one embodiment, the dielectric substrate is vehicle glass, such as a vehicle windshield.
Abstract:
The present application generally relates to an apparatus for communicating between a user device and a vehicle infotainment system. In particular, the system includes a near field antenna fabricated from a wire wrapped ferrite core located along an edge of a video display unit under trim piece surrounding the video display.
Abstract:
A apparatus for dynamically modifying filter characteristics of a delta-sigma modulator in order to receive and transmit radio frequency signals over a wide frequency range. The system is used for wide bandwidth radio system designed to adapt to various global radio standards and, more particularly, to a cellular radio architecture that employs a combination of a single circulator, programmable band-pass sampling radio frequency (RF) front-end and optimized digital baseband that is capable of supporting all current cellular wireless access protocol frequency bands.
Abstract:
An antenna module mounted to a roof of a vehicle that includes a plurality of antenna elements for various vehicle communications systems. The antenna module also includes an FDM camera associated with an FDM, where the camera is positioned at the rear of the module and is mounted in a general flat configuration parallel to the roof the vehicle so that the camera field-of-view is directed upward and so that metal components of the camera do not interfere with the radiation pattern of the antenna elements. The camera includes one or more optical elements, such as a prism or reflector, mounted to the camera or other structure that redirects the camera field-of-view rearward of the vehicle.