Abstract:
Improved systems and methods for the evaluation of runway changes that analyze the effect of the runway change on relevant factors, and provide intuitive visual feedback of the analysis, are provided. The provided systems and methods depict the original runway and the new runway, side by side, in a pictorial representation. Additionally, a selectable group of relevant factors for each runway is determined. The pictorial representation is overlaid with one or more symbolic indicators that distinctly demark each of the factors, alphanumeric descriptors may also be displayed alongside the symbolic indicators. The provided systems and methods additionally generate a tabular display of the information and factors. The tabular display provides a side by side comparison of the old runway, the new runway, and the relevant factors.
Abstract:
A method of operating an augmented reality processed terrain and obstacle threat scouting service is provided. The method includes using at least one sensor of a monitoring vehicle to monitor terrain and obstacle data. The monitored terrain and obstacle data is compared with terrain and obstacle data in a terrain and obstacle database. A non-validated georeferenced delta is determined when the comparison of the monitored terrain and obstacle data with terrain and obstacle data in the terrain and obstacle database finds non-matching terrain and obstacle data. The non-validated georeferenced delta is transmitted to a ground distribution center, consumer vehicle and/or cloud based server. Non-validated georeferenced delta received at a consumer vehicle is differentiated from other terrain and obstacle data on a synthetic vision display. Non-validated georeferenced delta received at a ground distribution center is validated against at least one other source and validated and non-validated is distributed to subscribing consumers.
Abstract:
A method for providing visual overlay assistance to a flight crew onboard an aircraft is provided. The method presents, via visual overlay device display, required settings for a plurality of flight deck instruments located in a flight deck onboard an aircraft, wherein the required settings are presented as graphical elements superimposed over each of the plurality of flight deck instruments.
Abstract:
A method and system for alerting a pilot to a potential unanticipated LTE with simple intuitive symbology on the cockpit display is provided. The provided method and system evaluates rotorcraft airspeed, wind velocity, wind direction, and rotorcraft height above ground to predict several scenarios for LTE zones. The provided method and system overlays or superimposes simple intuitive symbology on the existing PFD and/or MFD to alert a pilot to a potential LTE.
Abstract:
A visual search assistance system and related operating method are disclosed. An exemplary embodiment of the method dynamically determines a desired line-of-sight vector from an occupant of a vehicle to a visual target, and dynamically determines, with an onboard tracking system of the vehicle, an actual line-of-sight vector for the occupant of the vehicle. The actual line-of-sight vector is temporally associated with the desired line-of-sight vector. The method compares the actual line-of-sight vector against the desired line-of-sight vector to obtain a difference measurement, and generates a notification when the obtained difference measurement exceeds a threshold value. The notification provides guidance to redirect a gaze direction of the occupant toward the visual target.
Abstract:
A flight deck display system and method comprises a first source of host aircraft feature data and a second source of traffic data. A processor is coupled to the first and second sources and is configured to (a) receive host aircraft data; (2) receive traffic data; (3) filter traffic based on a predetermined set of separation criteria to identify vital traffic; (4) generate symbology graphically representative of vital traffic; (5) generate symbology graphically representative of the host aircraft; and (6) display the host aircraft and the vital traffic on an AMM display.
Abstract:
A system and method for displaying symbology that is indicative of the direction of a landing site is provided. The provided system and method generate and display, prior to the rotorcraft reaching the MAP, symbology that conveys visual guidance that may be quickly and easily comprehended by a pilot. The provided system and method reduce the pilot's visual scan area and associated search time, reducing cognitive workload and increasing situational awareness.
Abstract:
A system and method is provided that displays graphical symbology that enables a pilot to rapidly discern (1) that a neighboring aircraft is a rotorcraft, and (2) whether the rotorcraft is hovering. The provided system and method enables a user to define hovering, by editing a position change (distance) within a predetermined time.
Abstract:
A flight deck display system and method comprises a first source of host aircraft feature data and a second source of traffic data. A processor is coupled to the first and second sources and is configured to (a) receive host aircraft data; (2) receive traffic data; (3) filter traffic based on a predetermined set of separation criteria to identify vital traffic; (4) generate symbology graphically representative of vital traffic; (5) generate symbology graphically representative of the host aircraft; and (6) display the host aircraft and the vital traffic on an AMM display.
Abstract:
A system is provided for detecting misalignment between a helipad and a structure associated with the helipad. The system comprises a first database that includes first structure data, which data can comprise a location of the first structure. The system can further comprise a second database that can include second structure data, where the second structure data can comprise a location of the second structure. The second structure can comprise a helipad situated atop the first structure. The system can further comprise a processor coupled to receive the first structure data from the first database and the second structure data from the second database and can be configured, upon receipt of the first data structure and the second data structure: determine a correlation coefficient based upon a degree of overlap of the first volumetric model and the second volumetric model, and selectively generate an alert based upon the correlation coefficient.