摘要:
A projection objective provides a light path for a light bundle from an object field in an object plane to an image field in an image plane. The projection objective includes a first mirror (S1), a second mirror (S2), a third mirror (S3), a fourth mirror (S4), a fifth mirror (S5), a sixth mirror (S6), a seventh mirror (S7), and an eighth mirror (S8). The light bundles includes light with a wavelength in a range of 10-30 nm. The light is provided via the eight mirrors, and in the light path exactly one intermediate image of the object field is provided.
摘要:
There is provided an illumination system for microlithography. The illumination system includes an optical element having a plurality of field raster elements, a plane in which a field is illuminated, and a grazing incidence mirror situated in a light path from the optical element to the plane, after the optical element. The illumination system has no other grazing incidence mirror in the light path, after the optical element and before the plane.
摘要:
There is provided a projection exposure apparatus for microlithography using a wavelength less than or equal to 193 nm. The apparatus includes an optical element with a pupil raster element, and a projection objective with a real entrance pupil. The optical element is situated in or near a plane defined by the real entrance pupil.
摘要:
There is provided a projection objective for a projection exposure apparatus that has a primary light source for emitting electromagnetic radiation having a chief ray with a wavelength≦193 nm. The projection objective includes an object plane, a first mirror, a second mirror, a third mirror, a fourth mirror; and an image plane. The object plane, the first mirror, the second mirror, the third mirror, the fourth mirror and the image plane are arranged in a centered arrangement around a common optical axis. The first mirror, the second mirror, the third mirror, and the fourth mirror are situated between the object plane and the image plane. The chief ray, when incident on an object situated in the object plane, in a direction from the primary light source, is inclined away from the common optical axis.
摘要:
An imaging optical system has a plurality of mirrors which image an object field in an object plane in an image field in an image plane. The imaging optical system has a pupil obscuration. The last mirror in the beam path of the imaging light between the object field and the image field has a through-opening for the passage of the imaging light. A penultimate mirror of the imaging optical system in the beam path of the imaging light between the object field and the image field has no through-opening for the passage of the imaging light. The result is an imaging optical system that provides a combination of small imaging errors, manageable production and a good throughput for the imaging light.
摘要:
In general, in a first aspect, the invention features a system that includes a microlithography projection optical system. The microlithography projection optical system includes a plurality of elements arranged so that during operation the plurality of elements image radiation at a wavelength λ from an object plane to an image plane. At least one of the elements is a reflective element that has a rotationally-asymmetric surface positioned in a path of the radiation. The rotationally-asymmetric surface deviates from a rotationally-symmetric reference surface by a distance of about λ or more at one or more locations of the rotationally-asymmetric surface.
摘要:
Imaging optics includes a first mirror in the imaging beam path after the object field, a last mirror in the imaging beam path before the image field, and a fourth to last mirror in the imaging beam path before the image field. In an unfolded imaging beam path between the object plane and the image plane, an impingement point of the chief ray on a used region of each of the plurality of mirrors has a mirror spacing from the image plane. The mirror spacing of the first mirror is greater than the mirror spacing of the last mirror. The mirror spacing of the fourth to last mirror is greater than the mirror spacing of the first mirror. Chief rays that emanate from points of the object field that are spaced apart from another have a mutually diverging beam course, giving a negative back focus of the entrance pupil.
摘要:
An imaging optical system has a plurality of mirrors. These image an object field in an object plane into an image field in an image plane. In the imaging optical system, the ratio of a maximum angle of incidence of imaging light) on reflection surfaces of the mirrors and an image-side numerical aperture of the imaging optical system is less than 33.8°. This can result in an imaging optical system which offers good conditions for a reflective coating of the mirror, with which a low reflection loss can be achieved for imaging light when passing through the imaging optical system, in particular even at wavelengths in the EUV range of less than 10 nm.
摘要:
In general, in a first aspect, the invention features a system that includes a microlithography projection optical system. The microlithography projection optical system includes a plurality of elements arranged so that during operation the plurality of elements image radiation at a wavelength λ from an object plane to an image plane. At least one of the elements is a reflective element that has a rotationally-asymmetric surface positioned in a path of the radiation. The rotationally-asymmetric surface deviates from a rotationally-symmetric reference surface by a distance of about λ or more at one or more locations of the rotationally-asymmetric surface.
摘要:
Imaging optics includes a first mirror in the imaging beam path after the object field, a last mirror in the imaging beam path before the image field, and a fourth to last mirror in the imaging beam path before the image field. In an unfolded imaging beam path between the object plane and the image plane, an impingement point of the chief ray on a used region of each of the plurality of mirrors has a mirror spacing from the image plane. The mirror spacing of the first mirror is greater than the mirror spacing of the last mirror. The mirror spacing of the fourth to last mirror is greater than the mirror spacing of the first mirror. Chief rays that emanate from points of the object field that are spaced apart from another have a mutually diverging beam course, giving a negative back focus of the entrance pupil.