摘要:
Provided is a method for mass manufacturing, at low cost, of a fiber positive electrode for a lithium secondary battery, which has excellent charge/discharge cycle characteristics, and which is capable of charging/discharging with high current density, and a main active material of which is a lithium-doped transition metal oxide. The method includes the steps of: (a) forming a tubular coating of either a transition metal oxide or a transition metal hydroxide on a carbon fiber current collector; and (b) performing, in a lithium ion containing solution in a sealed system under presence of an oxidant or a reductant, heat treatment at 100 to 250° C. on the carbon fiber current collector, on which the tubular coating of either the transition metal oxide or the transition metal hydroxide is formed, to obtain a coating of a lithium-doped transition metal oxide on the carbon fiber current collector. Further provided are: a fiber negative electrode for a lithium secondary battery, which has high current density, high energy density, and excellent charge/discharge cycle characteristics, and which can be fabricated in a relatively easy manner; and a method for fabricating the fiber negative electrode. The fiber negative electrode for a lithium secondary battery includes: (c) a carbon fiber current collector; (d) an outer layer which is a tubular composite layer of a Sn oxide and MXOy formed on the carbon fiber current collector; and (e) an intermediate layer formed of a Sn alloy, which has a lithium occlusion capacity and which is present at an interface between the carbon fiber current collector and the outer layer. The method for fabricating the fiber negative electrode for a lithium secondary battery includes: forming a coating of one of Sn and a Sn alloy, and a coating of at least one kind of metal selected from the group consisting of Fe, Mo, Co, Ni, Cr, Cu, In, Sb, and Bi, on a carbon fiber current collector by an electroplating method; and then performing heat treatment on the carbon fiber current collector under a trace oxygen atmosphere at 350 to 650° C. Moreover, the lithium secondary battery includes: the fiber positive electrode and the fiber negative electrode fabricated in the above methods; and an electrolyte.
摘要:
Provided is a negative electrode material for an electricity storage device, comprises, a negative electrode active material comprising a compound containing at least SnO and P2O5, and a binder comprising a thermosetting resin. Also provided is a negative electrode for an electricity storage device, comprising a current collector having a surface coated with the negative electrode material for an electricity storage device. Further provided is a method of producing the negative electrode for an electricity storage device, the method comprising the steps of: coating the surface of the current collector with the negative electrode material for an electricity storage device; and carrying out heat treatment of the current collector at 150 to 400° C. under reduced pressure.
摘要:
Provided is a sulfur-modified polyacrylonitrile manufacturing method that is characterized in that a starting base powder that comprises sulfur powder and polyacrylonitrile powder is mixed and the mixture is heated in a non-oxidizing environment while outflow of sulfur vapor is prevented. Also provided are a cathode for lithium batteries that uses, as the active substance, the sulfur-modified polyacrylonitrile manufactured with the method, and a lithium secondary battery that includes the cathode as a component element. This enables the practical use of an inexpensive sulfur-based material as the cathode material for lithium secondary batteries, and in particular, a sulfur-based cathode material that enables higher output and has excellent cycle life characteristics, as well as other characteristics, and secondary lithium batteries using the same can be obtained.
摘要:
Identification information of a user who performs search is shared between an information processing apparatus and a device. When search from the user having the identification information is accepted, the device responds. At this time, when the condition for sending back a response can be set from both the information processing apparatus and device and is satisfied, the device transmits device information to the information processing apparatus.
摘要:
Provided is a hydrogen storage alloy which is characterized in that two or more crystal phases having different crystal structures are layered in a c-axis direction of the crystal structures. The hydrogen storage alloy is further characterized in that a difference between a maximum value and a minimum value of a lattice constant a in the crystal structures of the laminated two or more crystal phases is 0.03 Å or less.
摘要:
The present invention provides a method of efficiently fabricating a large number of fiber electrodes at the same time from a large number of fibers while taking advantage of inherent characteristics of fiber electrodes.A fiber electrode fabrication method according to the present invention includes: a step (2, 2a) of spreading a fiber tow; a step (3, 4, 5) of obtaining fiber positive electrodes or fiber negative electrodes by forming a positive electrode active material coating or a negative electrode active material coating on each of single fibers that are obtained by spreading the fiber tow; and a step (6, 6a) of forming a separator coating on the fiber positive electrodes or the fiber negative electrodes.
摘要:
A continuous repetitive method of rolling a series combination of asymmetric rolling and skin pass rolling operations is provided. Differential-speed rolling is performed as the asymmetric rolling, and a winder temporarily winds a metal strip with a collapsed plate shape by traverse winding (loose winding which allows the metal strip to be wound in a zigzag manner). Then, the skin pass rolling is performed, and orderly winding is performed in a coil form. In the flow of rolling, tandem rolling may be performed by arranging two or more rolling mills side by side so that the asymmetric rolling and the skin pass rolling operations are continuously performed without the traverse winding therebetween.
摘要:
A compound having a high reduction resistance and being capable of sufficiently performing a function as an electronic conductive additive when added to a positive electrode active material as an electronic conductive additive is provided. In a method for producing a cobalt cerium compound including a step of depositing a hydroxide containing cobalt and cerium in an aqueous solution containing cobalt ions and cerium ions by changing the pH of the aqueous solution and thereafter performing a treatment of oxidizing the hydroxide, the ratio of the cerium ions contained in the aqueous solution containing the cobalt ions and the cerium ions is set to be more than 5% by atom and 70% by atom or less with respect to the sum of the cobalt ions and the cerium ions before the hydroxide is deposited.
摘要:
Disclosed is a nickel positive electrode for a fiber battery having a long life duration, and also being enabling a high output and high capacity to be attained. For this purpose, the nickel positive electrode for a fiber battery is obtained by coating a carbon fiber with nickel, then causing a cathodic polarization in a nickel nitrate bath using the nickel-coated carbon fiber as a cathode, and then immersing the precipitate, which was deposited on the surface of the carbon fiber by the cathodic polarization, in an aqueous caustic alkali solution.
摘要:
The present invention provides a hydrogen absorbing alloy containing a phase of a Pr5Co19 type crystal structure having a composition defined by a general formula A(4−w)B(1+w)C19 (A denotes one or more element(s) selected from rare earth elements including Y (yttrium); B denotes an Mg element; C denotes one or more element(s) selected from a group consisting of Ni, Co, Mn, and Al; and w denotes a numeral in a range from −0.1 to 0.8) and having a composition as a whole defined by a general formula R1xR2yR3z (15.8≦x≦17.8, 3.4≦y≦5.0, 78.8≦z≦79.6, and x+y+z=100; R1 denotes one or more element(s) selected from rare earth elements including Y (yttrium); R2 denotes an Mg element, R3 denotes one or more element(s) selected from a group consisting of Ni, Co, Mn, and Al; the numeral of Mn+Al in the z is 0.5 or higher; and the numeral of Al in the z is 4.1 or lower).