Abstract:
A scan chain latch circuit, a method of operating a latch circuit in a scan chain, and a computer-readable medium having stored thereon a data structure defining a scan chain latch circuit for instantiation on a semiconductor die are disclosed. In an embodiment, the scan chain latch circuit comprises a first latch for holding one data value, a second latch for holding another data value, and a multiplexor. The one data value is applied to a first data input of the multiplexor and the another data value is applied to a second data input of the multiplexor. An alternating clock signal is applied to a select input of the multiplexor to control the output of the multiplexor, wherein the output of the multiplexor toggles between the two data values held in the two latches at a defined frequency.
Abstract:
A method for characterizing an integrated circuit that includes ramping the supply voltage to an integrated circuit as a function of time for each of the transistors in the integrated circuit, and measuring a power supply current for the integrated circuit during the ramping of the power supply voltage. The measured peaks in the power supply current are a current pulse that identifies an operation state in which each of the transistors are in an on state. The peaks in the power supply current are compared to the reference peaks for the power supply current for a reference circuit having a same functionality as the integrated circuit to determine the integrated circuit's fitness.
Abstract:
Methods, systems and devices related to authentication of chips using physical physical unclonable functions (PUFs) are disclosed. In accordance one such method, a test voltage is applied to a PUF system including a first subset of PUF elements that are arranged in series and a second subset of PUF elements that are arranged in series, where the first subset of PUF elements is arranged in parallel with respect to the second subset of PUF elements. In addition, the PUF system is measured to obtain at least one differential of states between the first subset of PUF elements and the second subset of PUF elements. Further, the method includes outputting an authentication sequence for the circuit that is based on the one or more differentials of states.
Abstract:
A method for characterizing an integrated circuit that includes ramping the supply voltage to an integrated circuit as a function of time for each of the transistors in the integrated circuit, and measuring a power supply current for the integrated circuit during the ramping of the power supply voltage. The measured peaks in the power supply current are a current pulse that identifies an operation state in which each of the transistors are in an on state. The peaks in the power supply current are compared to the reference peaks for the power supply current for a reference circuit having a same functionality as the integrated circuit to determine the integrated circuit's fitness.
Abstract:
A tamper-resistant memory is formed by placing a solid-state memory array between metal wiring layers in the upper portion of an integrated circuit (back-end of the line). The metal layers form a mesh that surrounds the memory array to protect it from picosecond imaging circuit analysis, side channel attacks, and delayering with electrical measurement. Interconnections between a memory cell and its measurement circuit are designed to protect each layer below, i.e., an interconnecting metal portion in a particular metal layer is no smaller than the interconnecting metal portion in the next lower layer. The measurement circuits are shrouded by the metal mesh. The substrate, metal layers and memory array are part of a single monolithic structure. In an embodiment adapted for a chip identification protocol, the memory array contains a physical unclonable function identifier that uniquely identifies the tamper-resistant integrated circuit, a symmetric encryption key and a release key.
Abstract:
Methods and systems for locating a filament in a resistive memory device are described. In an example, a device can acquire an image indicating an occurrence of photoemission from the resistive memory device. The device can determine a location of the filament in a switching medium of the resistive memory device using the acquired image.
Abstract:
Techniques facilitating integrated circuit identification and reverse engineering are provided. A computer-implemented method can comprise identifying, by a system operatively coupled to a processor, an element within a first elementary cell of one or more elementary cells of an integrated circuit. The method can also comprise matching, by the system, the element with respective elements across the one or more elementary cells including the first elementary cell. The respective elements can be replicas of the element. Further, matching the element with respective elements can be based on a layout analysis of the integrated circuit.
Abstract:
A Scanning Time-Resolved Emission (S-TRE) microscope or system includes an optical system configured to collect light from emissions of light generated by a device under test (DUT). A scanning system is configured to permit the emissions of light to be collected from positions across the DUT in accordance with a scan pattern. A timing photodetector is configured to detect a single photon or photons of the emissions of light from the particular positions across the DUT such that the emissions of light are correlated to the positions to create a time-dependent map of the emissions of light across the DUT. Updating the time-dependent map of the emissions based on variable dwell times at respective locations of the DUT.
Abstract:
A Scanning Time-Resolved Emission (S-TRE) microscope or system includes an optical system configured to collect light from emissions of light generated by a device under test (DUT). A scanning system is configured to permit the emissions of light to be collected from positions across the DUT in accordance with a scan pattern. A timing photodetector is configured to detect a single photon or photons of the emissions of light from the particular positions across the DUT such that the emissions of light are correlated to the positions to create a time-dependent map of the emissions of light across the DUT. The scanning system is configured to update the time-dependent map of the emissions based on combinations of the emissions of light at certain locations.
Abstract:
Methods and systems of detecting chip degradation are described. A processor may execute a test on a device at a first time, where the test includes executable instructions for the device to execute a task under specific conditions relating to a performance attribute. The processor may receive performance data indicating a set of outcomes from the task executed by the device during the test. The processor may determine a first value of a parameter of the performance attribute based on the identified subset. The processor may compare the first value with a second value of the parameter of the performance attribute. The second value is based on an execution of the test on the device at a second time. The processor may determine a degradation status of the device based on the comparison of the first value with the second value.