Abstract:
According to an aspect, an image display panel includes: a first pixel including (d−1) sub pixels, which are first to (d−2)-th sub pixels and a (d−1)-th sub pixel, and a second pixel that is adjacent to the first pixels and includes (d−1) sub pixels, which are first to (d−2)-th sub pixels and a d-th sub pixel. A region of the image display panel includes a first pixel display region and a second pixel display region. The first to (d−2)-th sub pixels of the first pixel, one part of the (d−1)-th sub pixel, and one part of the d-th sub pixel are arranged in the first pixel display region. The first to (d−2)-th sub pixels of the second pixel, the other part of the (d−1)-th sub pixel, and the other part of the d-th sub pixel are arranged in the second pixel display region.
Abstract:
A display device includes a signal processing unit that receives input signals, and calculates output signals to a first sub-pixel, a second sub-pixel, a third sub-pixel, and a fourth sub-pixel. The signal processing unit calculates a frequency of pixels belonging to each of a plurality of partitions using a light quantity of a surface light source. The signal processing unit calculates an index value for each of the partitions by at least multiplying the cumulative frequency being obtained by sequentially adding the frequency of pixels from a partition having the maximum light quantity among the partitions, and the number of partitions representing a position of a partition to which the cumulative frequency belongs counted from the partition having the maximum light quantity. The signal processing unit controls luminance of the surface light source based on a partition in which the index value exceeds a threshold.
Abstract:
According to an aspect, a display device includes an image display panel in which pixels each including first to fourth sub-pixels are arranged in a two-dimensional matrix; and a signal processing unit that converts an input signal into an output signal and outputs the generated output signal to the image display panel. The signal processing unit determines an expansion coefficient, obtains a generated signal of the fourth sub-pixel in each pixel based on input signals of the first to the third sub-pixels in the pixel itself and the expansion coefficient, obtains an output signal for the fourth sub-pixel in each pixel based on a generated signal of the fourth sub-pixel in the pixel itself and a generated signal of the fourth sub-pixel in an adjacent pixel to be output to the fourth sub-pixel.
Abstract:
According to an aspect, an image display panel includes: a first pixel including (d−1) sub pixels, which are first to (d−2)-th sub pixels and a (d−1)-th sub pixel, and a second pixel that is adjacent to the first pixels and includes (d−1) sub pixels, which are first to (d−2)-th sub pixels and a d-th sub pixel. A region of the image display panel includes a first pixel display region and a second pixel display region. The first to (d−2)-th sub pixels of the first pixel, one part of the (d−1)-th sub pixel, and one part of the d-th sub pixel are arranged in the first pixel display region. The first to (d−2)-th sub pixels of the second pixel, the other part of the (d−1)-th sub pixel, and the other part of the d-th sub pixel are arranged in the second pixel display region.
Abstract:
A display device includes a conversion section which generate a data conversion signal including a first number of bits from an input signal, an error dispersion section which generates a display control signal including a second number of bits that is smaller than the first number of bits from the data conversion signal and which spatially disperses errors that occur at the time of generating the display control signal, and a display panel section which displays an image on the basis of the display control signal.
Abstract:
According to one embodiment, a display device includes a switching liquid crystal unit, a display, and a controller. The switching liquid crystal unit includes optical elements switching an aperture pattern including an aperture portion and a light-shielding portion. The display overlaps the switching liquid crystal unit and displays parallax images including right and left eye images. The controller acquires positional information relating to a position of a viewer, and controls a position of the aperture pattern. The controller switches the aperture pattern from a first aperture pattern to a second aperture pattern so that a right eye always views the right eye image and a left eye always views the left eye image, and starts the switching before the viewer moves to an optimal switching position where a luminance viewed from the first aperture pattern is substantially equal to a luminance viewed from the second aperture patterns.
Abstract:
A display device includes: an image display unit that includes a plurality of main pixels in an image display region, the image display unit including sub-pixels; a light source that irradiates the image display region; a light source control unit that controls luminance of the light source; and a color information correction processing unit that corrects first color information that is obtained based on the luminance of the light source and an input video signal to second color information, when color information of at least one of a red pixel, a green pixel, and a blue pixel included in the first color information exceeds a predetermined threshold, the second information is corrected by degenerating color information of the red pixel, the green pixel, and the blue pixel, and by adding color information of the white pixel included in the first color information based on the degenerated color information.
Abstract:
According to an aspect, a display device includes: an image display panel in which pixels are arranged in a two-dimensional matrix, each of the pixels including a first sub-pixel displaying a first color, a second sub-pixel displaying a second color, a third sub-pixel displaying a third color, and a fourth sub-pixel displaying a fourth color; and a signal processing unit that converts input values of input signals into extended values in an extended color space to generate output signals, and outputs the generated output signals to the image display panel. The signal processing unit changes the output signals for the first to fourth sub-pixels based on at least saturation of the input signals.
Abstract:
A display device includes a signal processing unit that receives input signals, and calculates output signals to a first sub-pixel, a second sub-pixel, a third sub-pixel, and a fourth sub-pixel. The signal processing unit calculates a frequency of pixels belonging to each of a plurality of partitions using a light quantity of a surface light source. The signal processing unit calculates an index value for each of the partitions by at least multiplying the cumulative frequency being obtained by sequentially adding the frequency of pixels from a partition having the maximum light quantity among the partitions, and the number of partitions representing a position of a partition to which the cumulative frequency belongs counted from the partition having the maximum light quantity. The signal processing unit controls luminance of the surface light source based on a partition in which the index value exceeds a threshold.
Abstract:
According to an aspect, a display device includes: an image display panel; a color conversion device including a signal processing unit and a signal output unit; a planar light-source device; and a light-source-device control unit. The signal processing unit includes a color conversion circuit that converts an input signal in a reference color area into a converted input signal generated in a definition color area where a chromaticity point of at least one of a first color, a second color, and a third color is inside of a reference color area, and a four-color generation circuit that generates an output signal and a light-source-device control signal from the converted input signal. The signal output unit outputs the drive signal to each sub-pixel based on the output signal. The light-source-device control unit outputs a drive voltage for emitting white light on the planar light-source device based on the light-source-device control signal.