摘要:
An electrostatic clamp, which more effectively removes built up charge from a substrate prior to and during removal, is disclosed. Currently, the lift pins and ground pins are the only mechanisms used to remove charge from the substrate after implantation. The present discloses describes a clamp having one of more additional low resistance paths to ground. These additional conduits allow built up charge to be dissipated prior to and during the removal of the substrate from the clamp. By providing sufficient charge drainage from the backside surface of the substrate 114, the problem whereby the substrate sticks to the clamp can be reduced. This results in a corresponding reduction in substrate breakage.
摘要:
A method of fabricating a workpiece is disclosed. A material defining apertures is applied to a workpiece. A species is introduced to the workpiece through the apertures and the material is removed. For example, the material may be evaporated, may form a volatile product with a gas, or may dissolve when exposed to a solvent. The species may be introduced using, for example, ion implantation or gaseous diffusion.
摘要:
Electrostatic clamping devices and methods for reducing contamination to a workpiece coupled to an electrostatic clamping device are disclosed. According to an embodiment an electrostatic clamping device for coupling a workpiece comprises: an embossment portion on a surface of a body to contact the workpiece; and at least two electrodes within the body; wherein the two electrodes are separated by a separation portion below the embossment portion.
摘要:
This device has a liner disposed on a face in a vacuum chamber. A component in the vacuum chamber defines the face. The liner is configured to protect the workpiece from contamination or to prevent blistering of the face caused by implantation of atoms or ions into the face. The liner may be disposable and removed from the face in the vacuum chamber and replaced with a new liner in some embodiments. This liner may be a polymer with a roughened surface, be carbon-based, or be composed of carbon nanotubes in some embodiments.
摘要:
Electrostatic clamping devices and methods for reducing contamination to a workpiece coupled to an electrostatic clamping device are disclosed. According to an embodiment an electrostatic clamping device for coupling a workpiece comprises: an embossment portion on a surface of a body to contact the workpiece; and at least two electrodes within the body; wherein the two electrodes are separated by a separation portion below the embossment portion.
摘要:
The present invention provides methods and system for forming a buried oxide layer (BOX) region in a semiconductor substrate, such as, a silicon wafer. In one aspect, in a method of the invention, an initial dose of oxygen ions is implanted in the substrate while maintaining the substrate temperature in a range of about 300° C. to 600° C. Subsequently, a second dose of oxygen ions is implanted in the substrate while actively cooling the substrate to maintain the substrate temperature in range of about 50° C. to 150° C. These ion implantation steps are followed by an annealing step in an oxygen containing atmosphere to form a continuous BOX region in the substrate. In one preferred embodiment, the initial ion implantation step is performed in a chamber that includes a device for heating the substrate while the second ion implantation step is performed in a separate chamber that is equipped with a device for actively cooling the substrate. The annealing step can be performed in a third chamber or in either of the first or second chambers.
摘要:
A system (10) for the vacuum processing of substrates such as semiconductor wafers which includes a central handling chamber (14), a number of separately pumped and randomly accessed process chambers (16-19), and dual load lock chambers (22) which communicate with the central handling chamber. This configuration permits one batch of substrates to be subjected to load lock evacuation while a second batch, having been previously evacuated, is transferred one at a time to selected process chambers. Substrate transfer from the load locks to the central handling chamber is by means of elevators (42) and by means of a handling assembly (24) which undergoes and Z motion only, with final transfer from the central handling chamber to the process chambers being accomplished by pivoting platen assemblies (66).
摘要:
A workpiece support, which more effectively cools a textured workpiece is disclosed. A layer is added on top of a workpiece support. This layer is sufficiently soft so as to conform to the textured workpiece. Furthermore, the layer has a dielectric constant such that it does not alter the normal operation of the underlying electrostatic clamp. In some embodiments, the locations of the ground and lift pins are moved to further reduce the leakage of backside gas.
摘要:
A first species is implanted into an entire surface of a workpiece and helium is implanted into this entire surface with a non-uniform dose. The first species may be, for example, hydrogen, helium, or nitrogen. The helium has a higher dose at a portion of a periphery of the workpiece. When the workpiece is split, this split is initiated at the periphery with the higher dose. The non-uniform dose may be formed by altering a scan speed of the workpiece or an ion beam current of the helium. In one instance, the non-uniform dose of the helium is larger than a uniform dose of the hydrogen.
摘要:
Techniques for manufacturing solar cells are disclosed. In one particular exemplary embodiment, the technique may comprise disposing a mask upstream of the solar cell, the mask comprising a plurality of filaments spaced apart from one another to define at least one aperture; directing a ribbon ion beam of desired species toward the solar cell to ion implant a portion of the solar cell defined by the at least one aperture of the mask; and orienting the ribbon ion beam such that longer cross-section dimension of the ribbon beam is perpendicular to the aperture in one plane.