摘要:
There are provided a magnetic tunnel junction structure and a method of fabricating the same. The magnetic tunnel junction structure includes a lower electrode, a lower magnetic layer pattern and a tunnel layer pattern, which are sequentially formed on the lower electrode. The magnetic tunnel junction structure further includes an upper magnetic layer pattern, a buffer layer pattern, and an upper electrode, which are sequentially formed on a portion of the tunnel layer pattern. The sidewall of the upper magnetic layer pattern is surrounded by an oxidized upper magnetic layer, and the sidewall of the buffer layer pattern is surrounded by an oxidized buffer layer. The depletion of the upper magnetic layer pattern and the lower magnetic layer pattern in the magnetic tunnel junction region can be prevented by the oxidized buffer layer.
摘要:
Phase-changeable memory devices include a lower electrode electrically connected to an impurity region of a transistor in a substrate and a programming layer pattern including a first phase-changeable material on the lower electrode. An adiabatic layer pattern including a material having a lower thermal conductivity than the first phase-changeable material is on the programming layer pattern and an upper electrode is on the adiabatic layer pattern.
摘要:
A magnetic random access memory device may include a semiconductor substrate, a magnetic tunnel junction (MTJ) structure, a contact plug, and a digit line. More particularly, the MTJ structure may be on the semiconductor substrate, and the digit line may be adjacent the magnetic tunnel junction structure. In addition, the contact plug may provide electrical connection between the magnetic tunnel junction structure and the semiconductor substrate, and the contact plug may be between the magnetic tunnel junction structure and the semiconductor substrate. Related methods are also discussed.
摘要:
Magnetic Random Access Memory (MRAM) devices include a lower electrode and a magnetic tunnel junction on the lower electrode. The magnetic tunnel junction includes a seed layer and a tunneling barrier that is oriented in a same direction as the most closely packed plane direction of the seed layer. An oxide layer may be provided between the lower electrode and the magnetic tunnel junction. The lower electrode may be a titanium-rich TiN layer having more than 50 atomic percent titanium content. Analogous fabrication methods are also described.
摘要:
Phase-changeable memory devices include a lower electrode electrically connected to an impurity region of a transistor in a substrate and a programming layer pattern including a first phase-changeable material on the lower electrode. An adiabatic layer pattern including a material having a lower thermal conductivity than the first phase-changeable material is on the programming layer pattern and an upper electrode is on the adiabatic layer pattern.
摘要:
In a program method for a multi-level phase change memory device, multi-level data to be programmed in a selected memory cell is received, and a program signal is applied to the selected memory cell according to the received multi-level data. Herein, a rising time of the program signal is set to be longer than a falling time of the program signal.
摘要:
Disclosed is a method of driving a multi-level variable resistive memory device. A method of driving a multi-level variable resistive memory device includes supplying a write current to a variable resistive memory cell so as to change resistance of the variable resistive memory cell, verifying whether or not changed resistance enters a predetermined resistance window, the intended resistance window depending on the resistance of reference cells, and supplying a write current having an increased or decreased amount from the write current supplied most recently on the basis of the verification result so as to change resistance of the variable resistive memory cell.
摘要:
A magnetic memory device is provided. The magnetic memory device includes an invariable pinning pattern and a variable pinning pattern on a substrate. A tunnel barrier pattern is interposed between the invariable pinning pattern and the variable pinning pattern, and the pinned pattern is interposed between the invariable pinning pattern and the tunnel barrier pattern. A storage free pattern is interposed between the tunnel barrier pattern and the variable pinning pattern, and a guide free pattern is interposed between the storage free pattern and the variable pinning pattern. A free reversing pattern is interposed between the storage and guide free patterns. The free reversing pattern reverses a magnetization direction of the storage free pattern and a magnetization direction of the guide free pattern in the opposite directions.
摘要:
Provided is a resistance variable memory device and a method for operating same. The resistance variable memory device has a phase change material between a top electrode and a bottom electrode. In the method for operating a resistance variable memory, the write current is applied in a direction from the top electrode to the bottom electrode, and the read current is applied in a direction from the bottom electrode to the top electrode. The phase change material is programmed by applying the write current, and a resistance drift of the phase change material is restrained by applying the read current.
摘要:
Provided is a method of programming a resistance variable memory device. The resistance variable memory device includes a memory cell having multi states and a write driver outputting a program pulse for programming the memory cell into one of the multi states. The method of programming the resistance variable memory device includes applying a first program pulse to the resistance variable memory device and applying a second program pulse to a memory cell when the memory cell is programmed into an intermediate state. When the first program pulse is a reset pulse, the reset pulse is an over program pulse, that is, an over reset pulse. Therefore, the resistance variable memory device can secure a sufficient read margin as well as improve a resistance drift margin.