摘要:
RFID system components, such as readers and tags, communicate where the reader inventories a population of tags. The tags choose randomly one of a plurality of slots in response to each one of the values communicated by the reader and reply according to their chosen slot. The reader may initiate the inventorying by determining a Q-parameter value from a stored value and communicating the Q-parameter value to the tags. The reader may evaluate replies received from the tags in another plurality of tags, determine a second value from evaluating the second replies, and store the second value for future use.
摘要:
According to one aspect of the present invention, there is provided a method of calibrating an oscillator within a radio-frequency identification (RFID) circuit for use in an RFID tag. A first calibration value is stored within a non-volatile memory associated with the RFID circuit. The oscillator is calibrated in accordance with the first calibration value. The storing of the first calibration value is performed responsive to receiving a calibration command and an associated update value at the RFID circuit.
摘要:
According to one aspect of the present invention, there is provided a method to generate a demodulator clock signal and a modulator clock signal within an RFID circuit for use within an RFID tag. The demodulator clock signal is generated from a radio-frequency signal received at the RFID tag. A modulator clock signal is generated utilizing a first calibration value, stored within a non-volatile memory associated with the RFID tag.
摘要:
Rewriteable electronic fuses include latches and/or logic gates coupled to one or more nonvolatile memory elements. The nonvolatile memory elements are configured to be programmed to memory values capable of causing associated electronic circuits to settle to predetermined states as power-up or reset signals are applied to the fuses. Although not required, the nonvolatile memory elements used in the rewriteable electronic fuses may comprise floating-gate transistors. An amount of charge stored on the floating gate of a given floating-gate transistor determines the memory value and, consequently, the state to which a fuse settles upon power-up or reset of the fuse.
摘要:
Rewriteable electronic fuses include latches and/or logic gates coupled to one or more nonvolatile memory elements. The nonvolatile memory elements are configured to be programmed to memory values capable of causing associated electronic circuits to settle to predetermined states as power-up or reset signals are applied to the fuses. Although not required, the nonvolatile memory elements used in the rewriteable electronic fuses may comprise floating-gate transistors. An amount of charge stored on the floating gate of a given floating-gate transistor determines the memory value and, consequently, the state to which a fuse settles upon power-up or reset of the fuse.
摘要:
Analog-valued floating-gate transistors are used as trimmable circuit components for modifying and/or controlling the gain, phase, offset, frequency response, current consumption, and/or transfer function of signal pathways in parallel and/or serial processing circuits in radio frequency, analog, or mixed-signal integrated circuits.
摘要:
Hot-electron injection driven by hole impact ionization in the channel-to-drain junction of a p-channel MOSFET provides a new mechanism for writing a floating-gate memory. Various pFET floating-gate structures use a combination of this mechanism and electron tunneling to implement nonvolatile analog memory, nonvolatile digital memory, or on-line learning in silicon. The memory is nonvolatile because the devices use electrically isolated floating gates to store electronic charge. The devices enable on-line learning because the electron injection and tunneling mechanisms that write the memory can occur during normal device operation. The memory updates and learning are bidirectional because the injection and tunneling mechanisms add and remove electrons from the floating gate, respectively. Because the memory updates depend on both the stored memory and the pFETs terminal voltages, and because they are bidirectional, the devices can implement on-line learning functions.
摘要:
A Schottky junction diode device having improved performance and a multiple well structure is fabricated in a conventional CMOS process. A substrate including a material doped to a first conductivity type is formed. A first well is disposed over the substrate. The first well includes a material doped differently, such as to a second conductivity type opposite that of the first conductivity type. A second well is disposed within the first well. A region of metal-containing material is disposed in the second well to form a Schottky junction at an interface between the region of metal-containing material and the second well. In one embodiment, a second well contact is disposed in a portion of the second well.
摘要:
Retention-enhanced, programmable, shared floating gate logic circuits are employed as NVM cells. In one embodiment, the NVM cell is formed by a dual transistor logic gate circuit with a shared floating gate. The logic circuit is an inverter. The shared floating gate is doped partially or completely with p-type impurities to enhance retention. A charge adjustment circuit is arranged to inject and remove electrons to and from the shared floating gate determining the output of the logic gate circuit when supply voltage is applied to the logic gate circuit. In another embodiment, four transistors are employed to form another logic circuit such as a NOR gate or a NAND gate.
摘要:
A Schottky junction diode device having improved performance is fabricated in a conventional CMOS process. A substrate including a material doped to a first conductivity type is formed. A first well is disposed over the substrate. The first well includes a material doped to a second conductivity type opposite that of the first conductivity type. A region of metal-containing material is disposed over the first well to form a Schottky junction at an interface between the region of metal-containing material and the first well. In one embodiment, a first well contact is disposed in a portion of the first well. A second well is disposed over the substrate wherein the second well includes a material doped to the first conductivity type. In one embodiment, the first well and the second well are not in direct contact with one another.