Abstract:
A method and user equipment (UE) for transmitting Acknowledgement/Negative Acknowledgement (ACK/NACK) information in a wireless communication system. The UE determines a Physical Uplink Control Channel (PUCCH) format and a PUCCH resource through which ACK/NACK information for downlink transmission in a downlink subframe set including M (M>1) downlink subframes is to be transmitted. The UE transmits the ACK/NACK information using the PUCCH format and the PUCCH resource in one uplink subframe. More than one serving cell is configured for the UE and the more than one serving cell includes one Primary Cell (PCell) and at least one Secondary Cell (SCell). The ACK/NACK information is transmitted using a PUCCH format 1b, when the ACK/NACK information corresponds to one Physical Downlink Shared Channel (PDSCH) without a corresponding Physical Downlink Control Channel (PDCCH) received only on the PCell in the downlink subframe set.
Abstract:
A method for transmitting control information using PUCCH format 3 in a radio communication system includes detecting one or more Physical Downlink Control Channels (PDCCHs), receiving one or more Physical Downlink Shared Channel (PDSCH) signals corresponding to the one or more PDCCHs, and determining a PUCCH resource value nPUCCH(3,p) corresponding to a value of a transmit power control (TPC) field of a PDCCH for a PDSCH signal on a secondary cell (SCell) among a plurality of PUCCH resource values configured by a higher layer for the PUCCH format 3. If a single antenna port transmission mode is configured, the PUCCH resource value nPUCCH(3,p) indicated by the TPC field is mapped to one PUCCH resource for a single antenna port, and, if a multi-antenna port transmission mode is configured, the PUCCH resource value nPUCCH(3,p) indicated by the TPC field is mapped to a plurality of PUCCH resources for multiple antenna ports.
Abstract:
The present invention relates to a method for receiving a downlink signal at a terminal in a wireless communication system. In particular, the method comprises: receiving a control channel to be transmitted to a specific subframe via a first carrier; and decoding a data channel corresponding to the control channel to be transmitted to the specific subframe via a second carrier, using at least one parameter included in the control channel, wherein information on the orthogonal frequency division multiplexing (OFDM) start symbol of data channels that are transmitted via each of at least one carrier allocated to the terminal is signaled through an upper layer.
Abstract:
A method for transmitting information data by using a Reed-Muller coding scheme in a wireless communication system is disclosed. The method includes configuring a number of resource elements for transmitting the information data; dividing the information data to first information data and second information data if a bit size O of the information data is equal to or larger than a predetermined number; applying RM coding on each of the first information data and the second information data; concatenating the coded first information data and the coded second information data, and transmitting the concatenated data by using the predetermined number of resource elements, wherein a minimum value Q′min for the number of resource elements is defined by a sum of a minimum value Q′min—1 for the number of resource elements corresponding to the first information data and a minimum value Q′min—2 for the number of resource elements corresponding to the second information data.
Abstract:
The present invention relates to a wireless access system supporting multi-carrier aggregation (CA) and discloses various methods and devices for aperiodic feedback of channel state information (CSI). The method for aperiodic feedback of the channel state information (CSI) in the wireless access system supporting the multi-carrier aggregation (CA), according to an embodiment of the present invention, comprises the steps of: receiving a first message including an aperiodic CSI request field and uplink grant from a base station; receiving a second message including bitmap information indicating a downlink component carrier (DL CC) subjected to CSI measurement from the base station; measuring the CSI in consideration of at least one of the aperiodic CSI request, uplink grant, and bitmap information; and transmitting the measured CSI to the base station through a physical uplink shared channel (PUSCH) to thereby receive aperiodic feedback of the same.
Abstract:
A method is provided for transmitting Acknowledgement/Negative Acknowledgement (ACK/NACK) information in a wireless communication system. A User Equipment (UE) configures a Physical Uplink Control Channel (PUCCH) format 3 for transmission of the ACK/NACK information. The UE transmits the ACK/NACK information for downlink transmission in a downlink subframe set including M downlink subframes in one uplink subframe, wherein M>1. A plurality of serving cells are configured for the UE and include one Primary Cell (PCell) and at least one Secondary Cell (SCell). The UE transmits the ACK/NACK information using a PUCCH format 1b when a first condition is met that comprises a condition in case where the ACK/NACK information corresponds to one Physical Downlink Shared Channel (PDSCH) without a corresponding Physical Downlink Control Channel (PDCCH) received only on the PCell in the downlink subframe set and the ACK/NACK information corresponds to an additional PDSCH indicated by detection of one corresponding PDCCH.
Abstract:
A method and a terminal for transmitting control information to a base station in a wireless communication system. The method according to an embodiment includes receiving a Physical Downlink Control Channel (PDCCH) from the base station through at least one serving cell configured for the terminal; and setting an uplink-downlink (UL-DL) configuration for a reference unit to another UL-DL configuration after a predetermined time from when the PDCCH is received if the PDCCH indicates to set the UL-DL configuration for the at least one serving cell to the another UL-DL configuration. The indication of the PDCCH is transmitted with a predetermined period.
Abstract:
A method is provided for receiving a signal by a user equipment (UE) using time division multiplexing (TDD) in a wireless communication system. The UE receives uplink (UL) grant information on a first cell, the UL grant information scheduling a UL transmission on a second cell. The UE transmits UL data in a UL subframe on the second cell via a physical UL shared channel based on the UL grant information. The UE receives hybrid automatic repeat and request acknowledgement (HARQ-ACK) information in a downlink (DL) subframe on the first cell. The first cell and the second cell have different TDD UL-DL configurations. The DL subframe on the first cell is determined based on a TDD UL-DL configuration of the second cell.
Abstract:
A method is presented for transmitting signals at a User Equipment (UE) in a multi-antenna wireless communication system. Acknowledgment (ACK)/negative ACK (NACK) information is received from a base station (BS). At least one transport block negatively acknowledged by the ACK/NACK information is retransmitted to the BS. An uplink grant for retransmitting the at least one transport block is not detected. If a number of the at least one transport block is not equal to a number of transport blocks indicated by a most recent uplink grant, cyclic shift values and orthogonal cover codes (OCCs) of a demodulation reference signal (DMRS) for the at least one transport block are configured based on a cyclic shift field included in the most recent uplink grant and a number of layers corresponding to the at least one transport block.
Abstract:
Disclosed are a terminal device for controlling uplink signal transmission power, and a method therefore. The present invention relates to a method and terminal device for controlling uplink transmission power, wherein the method, in which a terminal that communicates with cells of each timing alignment (TA) group controls uplink transmission power in the event a plurality of TA groups including one or more cells exists in a wireless communication system, comprises: a step of determining the uplink transmission power for at least one channel in the event at least two channels from among a physical uplink control channel (PUCCH), a physical uplink shared channel (PUSCH) including a plurality of pieces of uplink control information (UCI), a PUSCH including no UCI, a physical random access channel (PRACH), and a sounding reference signal (SRS) are simultaneously transmitted in the same subframe in each specific cell of the plurality of TA groups; and a step of transmitting said at least one channel with the determined uplink transmission power, wherein said uplink transmission power is determined in consideration of a TA group index.