摘要:
A magnetoresistive sensor having a pinned layer that includes a first magnetic layer (AP1) a second magnetic layer (AP2) and an antiparallel coupling layer sandwiched between the AP1 and AP2 layers. The AP1 layer is adjacent to a layer of antiferromagnetic material (AFM layer) and is constructed so as to have a long spin diffusion length. The long spin diffusion length of the AP1 layer minimizes the negative GMR contribution of the AP1 layer, thereby increasing the overall GMR effect of the sensor.
摘要:
A magnetic head including a CPP GMR read sensor that includes a reference layer, a free magnetic layer and a spacer layer that is disposed between them, where the free magnetic layer and the reference magnetic layer are each comprised of Co2MnX where X is a material selected from the group consisting of Ge, Si, Al, Ga and Sn, and where the spacer layer is comprised of a material selected from the group consisting of Ni3Sn, Ni3Sb, Ni2LiGe, Ni2LiSi, Ni2CuSn, Ni2CuSb, Cu2NiSn, Cu2NiSb, Cu2LiGe and Ag2LiSn.Further embodiments include a dual spin valve sensor where the free magnetic layers and the reference layers are each comprised of Heusler alloys.A further illustrative embodiment includes a laminated magnetic layer structure where the magnetic layers are each comprised of a ferromagnetic Heusler alloy, and where the spacer layers are comprised of a nonmagnetic Heusler alloy.
摘要:
A current-perpendicular-to-the-plane (CPP) magnetoresistive (MR) sensor has an improved free layer structure that includes a first ferromagnetic interface layer on the sensor's nonmagnetic spacer layer, a first electrically conductive interlayer on the first interface layer, a central ferromagnetic NiFe alloy free layer on the first interlayer, a second electrically conductive interlayer on the central free layer, and a second ferromagnetic interface layer on the second interlayer. The first ferromagnetic interface layer, central ferromagnetic free layer, and second ferromagnetic interface layer are ferromagnetically coupled together across the electrically conductive interlayers so their magnetization directions remain parallel. The free layer structure may be used in single or dual CPP sensors and in spin-valve or tunneling MR sensors.
摘要:
A “scissoring-type” current-perpendicular-to-the-plane (CPP) magnetoresistive sensor with dual ferromagnetic sensing or free layers separated by a nonmagnetic spacer layer has improved stability as a result of etch-induced uniaxial magnetic anisotropy in each of the free layers. Each of the two ferromagnetic free layers has an etch-induced uniaxial magnetic anisotropy and an in-plane magnetic moment substantially parallel to its uniaxial anisotropy in the quiescent state, i.e., the absence of an applied magnetic field. The etch-induced uniaxial anisotropy of each of the free layers is achieved either by direct ion etching of each of the free layers, and/or by ion etching of the layer on which each of the free layers is deposited. A strong magnetic anisotropy is induced in the free layers by the etching, which favors generally orthogonal orientation of the two free layers in the quiescent state.
摘要:
A magnetoresistive sensor having a magnetic anisotropy induced in one or both of the free layer and/or pinned layer. The magnetic anisotropy is induced by a surface texture formed in the surface of the magnetic layer of either or both of the free layer or pinned layer. The surface texture is formed by a direct, angled ion mill performed on the surface of the magnetic layer while holding the wafer on a stationary chuck. By applying this ion milling technique, the magnetic anisotropy of the pinned layer can be formed in a first direction (eg. perpendicular to the ABS) while the magnetic anisotropy of the free layer can be formed perpendicular to that of the pinned layer (eg. parallel to the ABS).
摘要:
A magnetoresistive sensor having improved pinning field strength. The sensor includes a pinned layer structure pinned by exchange coupling with an antiferromagnetic (AFM) layer. The AFM layer is constructed upon an under layer having treated surface with an anisotropic roughness. The anisotropic roughness, produced by an angled ion etch, results in improved pinning strength. The underlayer may include a seed layer and a thin layer of crystalline material such as PtMn formed over the seed layer. The magnetic layer may include a first sub-layer of NiFeCr and a second sub-layer of NiFe formed there over. The present invention also includes a magnetoresistive sensor having a magnetic layer deposited on an underlayer (such as a non-magnetic spacer) having a surface treated with an anisotropic texture. An AFM layer is then deposited over the magnetic layer. The magnetic layer is then strongly pinned by a combination of exchange coupling with the AFM layer and a strong anisotropy provided by the surface texture of the underlayer. Such a structure can be used for example in a sensor having a pinned layer structure formed above the free layer, or in a sensor having an in stack bias structure.
摘要:
A magnetoresistive sensor having an in stack bias structure. The sensor includes a bias spacer that allows biasing of free layer magnetic moment in a direction orthogonal to the magnetic moment of the biasing layer.
摘要:
A magnetic memory cell for use in a magnetic random access memory array that uses the antiferromagnetic to ferromagnetic transition properties of FeRh to assist in the control of switching of the memory cell.
摘要:
A current perpendicular to plane dual giant magnetoresistive sensor (dual CPP GMR sensor) that prevents spin torque noise while having high dR/R performance. The sensor has a design that maximizes the GMR effect (dR/R) by providing a pinned layer structure that maximizes the positive GMR contribution of the AP2 layer (or magnetic layer closest to the spacer layer) while minimizing the negative GMR contribution of the AP1 layer (or layer furthest from the spacer layer). The pinned layer structure includes an AP1 layer that includes a thin CoFe layer that is exchange coupled with an IrMn or IrMnCr AFM layer and has two or more Co layers with a spin blocking layer sandwiched between them. The use of the Co layers and the spin blocking layer in the AP1 layer minimizes the negative contribution of the AP1 layer. The AP2 layer has a plurality of CoFe layers with nano-layers such as Cu sandwiched between the CoFe layers. The nano-layers increase the already strong GMR effect provided by the CoFe layers, increasing the positive GMR effect from the AP2 layer.
摘要:
A magnetoresistive sensor having a magnetically stable free layer fabricated from a material having a positive magnetostriction such as a Co—Fe—B alloy. Although the free layer is fabricated from a material that has a positive magnetostriction, which would ordinarily make the free layer unstable, the magnetization of the free layer remains stable because of an induced magnetic anisotropy that has an easy axis of magnetization oriented parallel to the Air-bearing Surface (ABS). This magnetic anisotropy of the free layer is induced by an anisotropic texturing of the surface of the free layer. The resulting anisotropic surface texture is produced by an ion milling process that utilizes an ion beam directed at an acute angle relative to the normal to the surface of the wafer whereon the sensor is fabricated while the wafer is held on a stationary chuck. This angled, static ion milling produces an anisotropic surface texture, or roughness, of the free layer, which results in the above described magnetic anisotropy with an easy axis of magnetization in a desired orientation.