摘要:
According to one embodiment, a method is disclosed for operating a semiconductor memory device. The semiconductor memory device includes a substrate, a stacked body, a memory film, a channel body, a select transistor, and a wiring. The method can boost a potential of the channel body by applying a first erase potential to the wiring, the select gate, and the word electrode layer. In addition, after the boosting of the potential of the channel body, with the wiring and the select gate maintained at the first erase potential, the method can decrease a potential of the word electrode layer to a second erase potential lower than the first erase potential.
摘要:
A nonvolatile semiconductor memory device includes: a memory unit; and a control unit. The memory unit includes: a multilayer structure including electrode films and interelectrode insulating films alternately stacked; a semiconductor pillar piercing the multilayer structure; insulating films and a memory layer provided between the electrode films and the semiconductor pillar; and a wiring connected to the semiconductor pillar. In an erase operation, the control unit performs: a first operation setting the wiring at a first potential and the electrode film at a second potential lower than the first potential during a first period; and a second operation setting the wiring at a third potential and the electrode film at a fourth potential lower than the third potential during a second period after the first operation. A length of the second period is shorter than the first period, and/or a difference between the third and fourth potentials is smaller than a difference between the first and second potentials.
摘要:
A nonvolatile semiconductor memory device includes: a memory unit; and a control unit. The memory unit includes: a multilayer structure including electrode films and interelectrode insulating films alternately stacked; a semiconductor pillar piercing the multilayer structure; insulating films and a memory layer provided between the electrode films and the semiconductor pillar; and a wiring connected to the semiconductor pillar. In an erase operation, the control unit performs: a first operation setting the wiring at a first potential and the electrode film at a second potential lower than the first potential during a first period; and a second operation setting the wiring at a third potential and the electrode film at a fourth potential lower than the third potential during a second period after the first operation. A length of the second period is shorter than the first period, and/or a difference between the third and fourth potentials is smaller than a difference between the first and second potentials.
摘要:
According to one embodiment, a method is disclosed for operating a semiconductor memory device. The semiconductor memory device includes a substrate, a stacked body, a memory film, a channel body, a select transistor, and a wiring. The method can boost a potential of the channel body by applying a first erase potential to the wiring, the select gate, and the word electrode layer. In addition, after the boosting of the potential of the channel body, with the wiring and the select gate maintained at the first erase potential, the method can decrease a potential of the word electrode layer to a second erase potential lower than the first erase potential.
摘要:
According to one embodiment, a nonvolatile semiconductor memory device includes a stacked structural unit, a semiconductor pillar, a memory layer, an inner insulating film, an outer insulating film and a cap insulating film. The unit includes a plurality of electrode films stacked alternately in a first direction with a plurality of inter-electrode insulating films. The pillar pierces the stacked structural unit in the first direction. The memory layer is provided between the electrode films and the semiconductor pillar. The inner insulating film is provided between the memory layer and the semiconductor pillar. The outer insulating film is provided between the memory layer and the electrode films. The cap insulating film is provided between the outer insulating film and the electrode films, and the cap insulating film has a higher relative dielectric constant than the outer insulating film.
摘要:
A groove 11 is formed in a semiconductor substrate 10. A source region 12 is formed on the bottom of the groove 11 on the side of the surface of the semiconductor substrate 10. A drain region 14 is formed in a portion, in which the groove 11 is not formed, on the side of the surface of the semiconductor substrate 10. Floating gates 30 are formed on both inner side wall portions of the groove 11 as charge storage layers. By thus three-dimensionally forming a memory transistor, it is possible to achieve the high density integration of a nonvolatile semiconductor memory device.
摘要:
An EEPROM includes an array of memory cell transistors, which is divided into cell blocks each including NAND cell units of series-connected cell transistors. A sense amplifier is connected to bit lines and a comparator. A data-latch circuit is connected to the comparator, for latching a write-data supplied from a data input buffer. After desired cell transistors selected for programming in a selected block are once programmed, a write-verify operation is performed. The comparator compares the actual data read from one of the programmed cell transistors with the write-data, to verify its written state. The write-verify process checks the resulting threshold voltage for variations using first and second reference voltages defining the lower-limit and upper-limit of an allowable variation range. If the comparison results under employment of the first voltage shows that an irregularly written cell transistor remains with an insufficient threshold voltage which is so low as to fail to fall within the range, the write operation continues for the same cell transistor. If the comparison results under employment of the second voltage shows that an excess-written cell transistor remains, the block is rendered "protected" at least partially.
摘要:
A nonvolatile semiconductor memory device including first laminated bodies each having a plurality of first gate electrodes of first memory cells, second laminated bodies each having a plurality of second gate electrodes of second memory cells, gate insulating film portions located on side surfaces of the first and second laminated bodies, first semiconductor layers that are each located between the first and second laminated bodies, first select transistors connected to an uppermost one of the first memory cells, second select transistors connected to an uppermost one of the second memory cells, isolation insulating films to separate the first and second select transistors into portions on the first and second laminated body sides, and a substrate potential applying electrode located to penetrate the isolation insulating films from a front surface side to a back surface side and connected to the first semiconductor layers.
摘要:
An erasable programmable read-only memory with NAND cell structure is disclosed which has memory cells provided on a N type substrate. The memory cells are divided into NAND cell blocks each of which has a series array of memory cell transistors. Each of the transistors has a floating gate, a control gate connected to a word line and N type diffusion layers serving as its source and drain. These semiconductor layers are formed in a P type well layer formed in a surface area of a substrate. The well layer serves as a surface breakdown prevention layer. During a data erase mode data stored in all the memory cells are erased simultaneously. During the data write mode subsequent to the erase mode, when a certain NAND cell block is selected, memory cells in the NAND cell block are subjected to data writing in sequence. When data is written into a certain memory cell in the selected NAND cell block, a control gate of the certain memory cell is supplied with a voltage which is so high as to form a strong electric field to allow the tunneling of electrons between the floating gate of the memory cell and the well layer. Consequently, only the selected cell can be written into.
摘要:
The present invention relates to a non-volatile semiconductor memory having non-volatile memory cells capable of electrically erasing and writing data. Each memory cell has a floating gate formed on the surface of the semiconductor substrate above the channel region, and a control gate. The floating gate partially covers the channel region. Each memory cell is thereby constructed of a parallel connection of a floating gate transistor and an enhancement type transistor. The floating gate transistor is displaced in one of the widthwise directions of the channel region, or partially covers only the central portion of the channel region in the widthwise direction thereof. A plurality of memory cells are connected in series to constitute a basic block. Adjacent basic blocks are separated by an enhancement type MOS transistor. In this memory, a memory cell (floating gate) and an enhancement type MOS transistor (gate) are formed in self alignment with each other using the same mask. In addition, in this memory, a control gate and a floating gate are formed in self alignment with each other using the same mask.