摘要:
Iterative write pausing techniques to improve read latency of memory systems including memory systems with phase change memory (PCM) devices. A PCM device includes a plurality of memory locations and a mechanism for executing an iterative write to one or more of the memory locations in response to receiving a write command that includes data to be written. The executing includes initiating the iterative write, updating a state of the iterative write, pausing the iterative write including saving the state in response to receiving a pause command, and resuming the iterative write in response to receiving a resume command. The resuming is responsive to the saved state and to the data to be written.
摘要:
Iterative write pausing techniques to improve read latency of memory systems including memory systems with phase change memory (PCM) devices. A PCM device includes a plurality of memory locations and a mechanism for executing an iterative write to one or more of the memory locations in response to receiving a write command that includes data to be written. The executing includes initiating the iterative write, updating a state of the iterative write, pausing the iterative write including saving the state in response to receiving a pause command, and resuming the iterative write in response to receiving a resume command. The resuming is responsive to the saved state and to the data to be written.
摘要:
Persistent data storage with low latency is provided by a method that includes receiving a low latency store command that includes write data. The write data is written to a first memory device that is implemented by a nonvolatile solid-state memory technology characterized by a first access speed. It is acknowledged that the write data has been successfully written to the first memory device. The write data is written to a second memory device that is implemented by a volatile memory technology. At least a portion of the data in the first memory device is written to a third memory device when a predetermined amount of data has been accumulated in the first memory device. The third memory device is implemented by a nonvolatile solid-state memory technology characterized by a second access speed that is slower than the first access speed.
摘要:
An embodiment is a method for establishing a correspondence between a first logical address and a first physical address on solid-state storage devices located on a solid-state storage board. The solid-state storage devices include a plurality of physical memory locations identified by physical addresses, and the establishing is by a software module located on a main board that is separate from the solid-state storage board. The correspondence between the first logical address and the first physical address is stored in in a location on a solid-state memory device that is accessible by an address translator module located on the solid-state storage board. The solid-state memory device is located on the solid-state storage board. The first logical address is translated to the first physical address by the address translator module based on the previously established correspondence between the first logical address and the first physical address.
摘要:
A method for determining an optimized refresh rate involves testing a refresh rate on rows of cells, determining an error rate of the rows, evaluating the error rate of the rows; and repeating these steps for a decreased refresh rate until the error rate is greater than a constraint, at which point a slow refresh rate is set.
摘要:
An embodiment is a method for establishing a correspondence between a first logical address and a first physical address on solid-state storage devices located on a solid-state storage board. The solid-state storage devices include a plurality of physical memory locations identified by physical addresses, and the establishing is by a software module located on a main board that is separate from the solid-state storage board. The correspondence between the first logical address and the first physical address is stored in in a location on a solid-state memory device that is accessible by an address translator module located on the solid-state storage board. The solid-state memory device is located on the solid-state storage board. The first logical address is translated to the first physical address by the address translator module based on the previously established correspondence between the first logical address and the first physical address.
摘要:
Multi-write endurance and error control coding of non-volatile memories including a method for receiving write data and a write address of a memory page in a memory. The write data is partitioned into a plurality of sub-blocks, each sub-block including q bits of the write data. Error correction bits are generated at the computer in response to the sub-blocks and to an error correction code (ECC). At least one additional sub-block containing the error correction bits are appended to the partitioned write data and a write word is generated. The write word is generated by performing for each of the sub-blocks: selecting a codeword such that the codeword encodes the sub-block and is consistent with current electrical charge levels of the plurality of memory cells associated with the memory page; concatenating the selected codewords to form the write word; and writing the write word to the memory page.
摘要:
Persistent data storage is provided by a method that includes receiving a low latency store command that includes write data. The write data is written to a first memory device that is implemented by a nonvolatile solid-state memory technology characterized by a first access speed. It is acknowledged that the write data has been successfully written to the first memory device. The write data is written to a second memory device that is implemented by a volatile memory technology. At least a portion of the data in the first memory device is written to a third memory device when a predetermined amount of data has been accumulated in the first memory device. The third memory device is implemented by a nonvolatile solid-state memory technology characterized by a second access speed that is slower than the first access speed.
摘要:
Storing data in memory using wear-focusing techniques for improved endurance. A method for storing the data includes receiving write data to be written into a memory that is logically divided into a plurality of regions. The plurality of regions includes a first region and a second region that are implemented by the same memory technology. The memory is subject to degradation as a result of write operations. The write data is classified as dynamic data or static data. The write data is encoded using a first type of encoding in response to the write data being classified as dynamic. The write data encoded using the first type of encoding is stored in the first region of the memory. The write data is encoded using a second type of encoding and stored in the second region of the memory in response to classifying the write data as static data.
摘要:
Bad block management for flash memory including a method for storing data. The method includes receiving a write request that includes write data. A block of memory is identified for storing the write data. The block of memory includes a plurality of pages. A bit error rate (BER) of the block of memory is determined and expanded write data is created from the write data in response to the BER exceeding a BER threshold. The expanded write data is characterized by an expected BER that is lower than the BER threshold. The expanded write data is encoded using an error correction code (ECC). The encoded expanded write data is written to the block of memory.