Abstract:
A user equipment, UE, (14) and a radio network node (12) can perform multiple input multiple output, MIMO, communication. The UE determines a precoder (50, 54) used in the radio network node for transmitting signals from multiple transmit antennas to the UE. Based on the determined precoder used, the UE determines receiver parameters (22, 60A, 60B) for receiving MIMO signals from the radio network node, and configures the UE to receive MIMO signals from the radio network node in accordance with the determined receiver parameters. The radio network node may provide information for transmission to the UE indicating the precoder used in the radio network node to permit the UE to determine a receiver configuration for receiving MIMO signals based on the determined precoder used by the radio network node.
Abstract:
Techniques for using user equipment, UE, activity information, e.g., by a network node in a communications network are described. The network node can obtain the UE activity information, i.e., information associated with at least one of transmission activity and reception activity for a UE, and then use the UE activity information to configure a positioning function. Some examples of the positioning function are positioning method selection, measurement configuration and assistance data provisioning, reserving positioning resources, stopping the positioning session, delaying handover of the UE, deciding on a position session organization such as number of parallel measurements to be performed, and estimating an impact on battery lifetime.
Abstract:
A user equipment (UE) performs measurements on a serving cell and at least one neighbor cell in a heterogeneous wireless communications network that includes one or more higher power radio network nodes operating near one or more lower power radio network nodes. The UE acquires enhanced neighbor cell information (eNCI) including at least subframe information and determines an allowed set of one or more subframes during which the UE may make downlink and/or uplink measurements for at least one cell in the heterogeneous network. A network node in the heterogeneous network generates the eNCI, from which the UE may determine the allowed set of radio transmission subframes, and provides the eNCI for the UE to coordinate the UE measurements on the at least one cell during one or more of the allowed subframes.
Abstract:
The embodiments of the present invention relate to a method in UE (400) and a UE (400) configured to adapt at least one higher layer filtering parameter used for radio link failure detection between the UE (400) and a base station (600) in a telecommunications system (200). The embodiments of the present invention further relate to a base station (600) and a method in the base station (200). According to an embodiment of the present invention, the UE (400) is configured to operate in a discontinuous reception (DRX) mode having at least one DRX cycle; and is further configured to adapt at least one parameter as a function of a current DRX cycle the UE is using. The UE (400) is further configured to evaluate radio link failure detection based on the parameters. After evaluation, the UE (400) is further configured to evaluate radio link failure detection based on the one or several adapted parameters. After evaluation, the UE (400) is arranged to inform the base station (600) on radio link conditions.
Abstract:
The present disclosure relates to a method and a network node 100 in a wireless communications network 1. In particular, it relates to selecting a frequency band for operation for user equipment 9 in the wireless communications network 1. The frequency band to be selected is either a licensed frequency band or an unlicensed frequency band. The network node 100 is a macro base station 5, or a home base station (7, 700), and is adapted to condition measurements communicate with user equipments 9 in the wireless communications network 1 which comprises both the macro base station 5 and the home base station (7, 700). The home base station (7, 700) is adapted to support operation in both the licensed frequency band and the unlicensed frequency band. The method comprises obtaining radio condition measurements performed on the licensed frequency band and/or on the unlicensed frequency band; selecting the frequency band, based on the obtained radio condition measurements; and updating the home base station of the selected frequency band to be used for communication with one or more of the user equipments.
Abstract:
The present invention relates to methods and arrangements that enable a User Equipment UE to limit the number of sub cell searches needed in a wireless communication system with Coordinated Multiple Point transmission/reception (CoMP) cells, while keeping an acceptable system performance at handovers. This is achieved by a solution where the UE does sub cell search in a candidate target CoMP cell only when the candidate target CoMP cell quality performance is within a reasonable range or when the serving CoMP cell quality performance is low.
Abstract:
The present invention relates to a method in a radio network node of a cellular network, for controlling admission of a UE in a cell covering a region. The method comprises obtaining (710) a location of the UE, comparing (720) information related to a geometric boundary of the region and the obtained location of the UE, and determining (730) whether to admit the UE in the cell based on the comparison.
Abstract:
The invention relates to methods and devices for supporting configuration of a measurement gap pattern for a user equipment (91) requiring measurement gaps for performing an inter-frequency measurement. A radio network node (81) receives an indication (85) from the user equipment (91) that the user equipment (91) is going to perform an inter-frequency measurement for positioning, which inter-frequency measurement requires measurement gaps. The radio network node (81) may determine a measurement gap pattern for performing the inter-frequency measurement and may signal, to the user equipment (91), information (86) to initiate use of the determined measurement gap pattern in the user equipment (91). Alternatively the user equipment (91) configures the measurement gap pattern itself based on a set of pre-defined rules.
Abstract:
Mobility parameters, such as those used in handoff decisions, are based on the speed of User Equipment (UE) (10), measured at two points. UE speed estimates are taken at both the UE (10) and base station (12), and the two speeds compared. If the speeds match (or differ by less than a predetermined amount), one or more mobility parameters are adapted based on the UE speed. These parameters may include time to trigger (TTT), time to satisfy (TTS), measurement time, forgetting factor, β, measurement period (Tm), handover prohibit timer, MeasurementReportingmargin, HOmargin, hysteresis, and the like. The UE speed comparison may be performed at the UE (10) or at the base station (12). In one embodiment, a plurality of UE speed ranges are defined (e.g., low, medium, high), with corresponding mobility parameter values associated with each range.
Abstract:
A user equipment for handling a cell change from a first cell to a second cell in a wireless communications network alters a duration of a measurement time over which at least one measurement is performed and alters a measurement bandwidth of the at least one measurement. The alterations may be performed based on associated bandwidths of the first and second cells. A network node sends, to the user equipment, a notification of a cell change and information associated with the cell change and also receives measurement data of at least one measurement performed over an altered measurement bandwidth and an altered duration of measurement time where the alterations are based on the information associated with the cell change.