Abstract:
Techniques and mechanisms for a pixel array to provide a level of conversion gain. In an embodiment, the pixel array includes conversion gain control circuitry to be selectively configured at different times for different operational modes, each mode for implementing a respective conversion gain. The conversion gain control circuitry selectively provides switched coupling of the pixel cell to—and/or switched decoupling of the pixel cell from—a supply voltage. In another embodiment, the conversion gain control circuitry selectively provides switched coupling of the pixel cell to—and/or switched decoupling of the pixel cell from—sample and hold circuitry.
Abstract:
Embodiments of an apparatus including a color filter arrangement formed on a substrate having a pixel array formed therein. The color filter arrangement includes a clear filter having a first clear hard mask layer and a second clear hard mask layer formed thereon, a first color filter having the first clear hard mask layer and the second hard mask layer formed thereon, a second color filter having the first clear hard mask layer formed thereon, and a third color filter having no clear hard mask layer formed thereon. Other embodiments are disclosed and claimed.
Abstract:
Embodiments of the invention describe providing a compact solution to provide high dynamic range imaging (HDRI or simply HDR) for an imaging pixel by utilizing a control node for resetting a floating diffusion node to a reference voltage value and for selectively transferring an image charge from a photosensitive element to a readout node. Embodiments of the invention further describe control node to have to a plurality of different capacitance regions to selectively increase the overall capacitance of the floating diffusion node. This variable capacitance of the floating diffusion node increases the dynamic range of the imaging pixel, thereby providing HDR for the host imaging system, as well as increasing the signal-to-noise ratio (SNR) of the imaging system.
Abstract:
An image sensor includes a first pixel unit horizontally adjacent to a second pixel unit. Each pixel unit includes plurality of photodiodes and a shared floating diffusion region. A first pixel transistor region of the first pixel unit has a plurality of pixel transistors. A second pixel transistor region of the second pixel unit is horizontally adjacent to the first pixel transistor region and also has a plurality of pixel transistors. A transistor layout of the second pixel transistor region is a minor image of a transistor layout of the first pixel transistor region.
Abstract:
A monolithic backside-sensor-illumination (BSI) image sensor has a sensor array is tiled with a multiple-pixel cells having a first pixel sensor primarily sensitive to red light, a second pixel sensor primarily sensitive to red and green light, and a third pixel sensor having panchromatic sensitivity, the pixel sensors laterally adjacent each other. The image sensor determines a red, a green, and a blue signal comprising by reading the red-sensitive pixel sensor of each multiple-pixel cell to determine the red signal, reading the sensor primarily sensitive to red and green light to determine a yellow signal and subtracting the red signal to determine a green signal. The image sensor reads the panchromatic-sensitive pixel sensor to determine a white signal and subtracts the yellow signal to provide the blue signal.
Abstract:
A backside illuminated imaging sensor with a seal ring support includes an epitaxial layer having an imaging array formed in a front side of the epitaxial layer. A metal stack is coupled to the front side of the epitaxial layer, wherein the metal stack includes a seal ring formed in an edge region of the imaging sensor. An opening is included that extends from the back side of the epitaxial layer to a metal pad of the seal ring to expose the metal pad. The seal ring support is disposed on the metal pad and within the opening to structurally support the seal ring.