Abstract:
A transmission apparatus includes a plurality of orthogonal frequency division multiplexing (OFDM) modulation signal generators, which generate a first OFDM modulation signal and a second OFDM modulation signal. The transmission apparatus also includes a transmitter that transmits the first OFDM modulation signal from a first antenna and the second OFDM modulation signal from a second antenna, in an identical frequency band. A reception apparatus is provided, which includes a plurality of antennas that receive a plurality of OFDM modulation signals; a plurality of OFDM demodulators that transform the plurality of OFDM modulation signals to a plurality of reception signals using Fourier transform; an estimator that outputs a distortion estimation signal using one or more symbols for demodulation included in the plurality of reception signals; and a demodulator that compensates for distortion of the reception signals using the distortion estimation signal and demodulates a data symbol included in the reception signals.
Abstract:
Transmission quality is improved in an environment in which direct waves dominate in a transmission method for transmitting a plurality of modulated signals from a plurality of antennas at the same time. All data symbols used in data transmission of a modulated signal are precoded by hopping between precoding matrices so that the precoding matrix used to precode each data symbol and the precoding matrices used to precode data symbols that are adjacent to the data symbol in the frequency domain and the time domain all differ. A modulated signal with such data symbols arranged therein is transmitted.
Abstract:
Transmission quality is improved in an environment in which direct waves dominate in a transmission method for transmitting a plurality of modulated signals from a plurality of antennas at the same time. All data symbols used in data transmission of a modulated signal are precoded by hopping between precoding matrices so that the precoding matrix used to precode each data symbol and the precoding matrices used to precode data symbols that are adjacent to the data symbol in the frequency domain and the time domain all differ. A modulated signal with such data symbols arranged therein is transmitted.
Abstract:
Provided is a precoding method for generating, from a plurality of baseband signals, a plurality of precoded signals to be transmitted over the same frequency bandwidth at the same time, including the steps of selecting a matrix F[i] from among N matrices, which define precoding performed on the plurality of baseband signals, while switching between the N matrices, i being an integer from 0 to N−1, and N being an integer at least two, generating a first precoded signal z1 and a second precoded signal z2, generating a first encoded block and a second encoded block using a predetermined error correction block encoding method, generating a baseband signal with M symbols from the first encoded block and a baseband signal with M symbols the second encoded block, and precoding a combination of the generated baseband signals to generate a precoded signal having M slots.
Abstract:
A transmission method simultaneously transmitting a first modulated signal and a second modulated signal at a common frequency performs precoding on both signals using a fixed precoding matrix and regularly changes the phase of at least one of the signals, thereby improving received data signal quality for a reception device.
Abstract:
Disclosed are an encoder, a transmitting device, a coding method and a transmission method with which the transmission amount is reduced and a deterioration in transmission efficiency is suppressed while improving reception quality when QC-LDPC or a like block coding is used. A puncture pattern setting unit searches for a puncture pattern for each integral multiple of the number of columns or for each divisor of the number of columns of a sub block matrix that forms a check matrix (H) of a QC-LDPC code, and a puncture unit (data reduction unit) switches the puncture pattern for each integral multiple of the number of columns or for each divisor of the number of columns of the sub block matrix that forms the check matrix of the QC-LDPC code.
Abstract:
In the present invention, data is transmitted more suitably in an emergency state. This communication system comprises: a management device that manages first data including settings pertaining to communication during a normal state, and second data including settings pertaining to communication during an emergency state; and a communication instrument that controls a communication operation to another communication instrument in the normal state on the basis of the first data received from the management device, and that controls a communication operation to the other communication instrument in the emergency state on the basis of the second data received from the management device.
Abstract:
This communication device comprises: a control unit that sets information relating to multiband and/or multichannel communication in an extended field of a beacon signal; and a communication unit that transmits the beacon signal.
Abstract:
A transmission device that improves data reception quality includes: a weighting synthesizer that generates a first precoded signal and a second precoded signal from a first baseband signal and a second baseband signal, respectively; a phase changer that applies a phase change of i×Δλ to the second precoded signal; an inserter that inserts a pilot signal into the second precoded signal applied with the phase change; and a phase changer that applies a phase change to the second precoded signal applied with the phase change and inserted with the pilot signal. Δλ satisfies π/2 radians
Abstract:
This communication device relays a relay signal to be transmitted to and from a first communication device and a second communication device, and is connected to a first apparatus. The communication device transmits the relay signal using a first transmission slot, and also transmits, using a second transmission slot, a signal having been transmitted from the first apparatus, said signal being transmitted within the transmission period of the first transmission slot in a frequency domain different from that of the first transmission slot.