Abstract:
A monolithic, micromechanical vibrating beam accelerometer with a trimmable resonant frequency is fabricated from a silicon substrate which has been selectively etched to provide a resonant structure suspended over an etched pit. The resonant structure comprises an acceleration sensitive mass and at least two flexible elements having resonant frequencies. Each of the flexible elements is disposed generally collinear with at least one acceleration sensitive axis of the accelerometer. One end of at least one of the flexible elements is attached to a tension relief beam for providing stress relief of tensile forces created during the fabrication process. Mass support beams having a high aspect ratio support the mass over the etched pit while allowing the mass to move freely in the direction collinear with the flexible elements. Also disclosed is a method for fabricating such an accelerometer. Further disclosed is an alternative embodiment of the aforementioned accelerometer characterized by a low profile, and alternative planar processing methods for fabrication of these and other embodiments.
Abstract:
Gettering enclosures for semiconductor packages, comprising an enclosure having a cavity for accommodating a semiconductor device; a gettering chamber (disposed above the semiconductor device) communicating with the cavity, comprising a getter precursor secured to the cavity and spaced from a wall of the cavity, wherein the wall is transparent to laser light so as to allow a beam of laser light to strike the getter precursor and sputter same on the walls of the gettering chamber.
Abstract:
A monolithic, micromechanical tuning fork gyroscope is fabricated from a unitary silicon substrate utilizing etch stop diffusions and selective anisotropic etching. A non-etched silicon structure is suspended over the selectively etched pit. The non-etched silicon structure includes at least first and second vibratable structures. Each vibratable structure is energizable to vibrate laterally along an axis normal to the rotation sensitive axis. The lateral vibration of the first and second vibratable structures effects simultaneous vertical movement of at least a portion of the non-etched silicon structure upon the occurrence of angular rotation of the gyroscope about the rotation sensitive axis. The vertical movement of the non-etched silicon structure is sensed, and a voltage proportional to the movement is generated, for providing an indication of angular rate of rotation detected by the gyroscope.
Abstract:
A micromechanical tuning fork gyroscope includes a suspended structure comprising at least first and second vibratable structures. Each vibratable structure is energizable to vibrate laterally, within a first plane, along an axis normal to the rotation sensitive axis. The lateral or inplane vibration of the first and second vibratable structures effects simultaneous vertical or rotational movement of at least a portion of the suspended structure upon the occurrence of angular rotation of the gyroscope about the rotation sensitive axis. Vertical or rotational movement of the suspended structure is sensed, and a voltage proportional to the movement is generated, for providing an indication of angular rate of rotation detected by the gyroscope.
Abstract:
A monolithic, micromechanical vibrating beam accelerometer with a trimmable resonant frequency is fabricated from a silicon substrate which has been selectively etched to provide a resonant structure suspended over an etched pit. The resonant structure comprises an acceleration sensitive mass and at least two flexible elements having resonant frequencies. Each of the flexible elements is disposed generally collinear with at least one acceleration sensitive axis of the accelerometer. One end of at least one of the flexible elements is attached to a tension relief beam for providing stress relief of tensile forces created during the fabrication process. Mass support beams having a high aspect ratio support the mass over the etched pit while allowing the mass to move freely in the direction collinear with the flexible elements. Also disclosed is a method for fabricating such an accelerometer. Further disclosed is an alternative embodiment of the aforementioned accelerometer characterized by a low profile, and alternative planar processing methods for fabrication of these and other embodiments.
Abstract:
A bridge electrode structure and method of fabrication thereof is provided that is adapted to provide electrically isolated metal bridges over the active portions of a monolithic micromechanical transducer. The bridge electrode of the invention is also adapted to operate in facing relationship with one or more buried electrodes, providing top-to-bottom symmetry for balanced application of forces, or motion detection when used in conjunction with transducer elements. The transducer, typically a gyroscope or an accelerometer, includes a semiconductor substrate and active elements etched out of the substrate, the active elements including flexure-supported transducer plates. The bridge electrodes are anchored at opposing points on the substrate's surface to metal layers used to facilitate their electro-forming. The central portions of the bridge are electroplated over an insulating spacer, such as a photoresist layer.
Abstract:
A motion transducer fabricated from a semiconductor material by etched exposure and release of a resiliently suspended element. Electrical sensing and/or torquing is applied to the suspended element to produce mass or vibrational sensitivities to provide a transducer for various physical parameters. In the case of a gyroscopic transducer a mass is applied to the element and may be applied in a balanced configuration on either side. The semiconductor element and electrodes may be isolated by the use of buried PN junctions or dielectric layers, and a separately formed insulating dielectric bridge may be used to provide a support link between the suspended element and the remainder of the semiconductor material. A specific crystal orientation is useful in permitting etch control in freeing the suspended element from the remainder of the material. Suspension link stress relief is provided and a waffle construction achieved in the suspended element for use in motional transduction.
Abstract:
An accelerometer fabricated by micromachining techniques from a crystaline precursor. The accelerometer is formed in a body of a semiconductor crystal such as silicon by doping portions to an etch resistant condition and etching a cavity around them to release a resiliently suspended multi legged member. A conductor is formed in one of the legs. A permanent magnet is placed with opposite polarity poles on either side of the leg and the acceleration displacement of the member sensed from which a current is developed through the leg conductor to restore the member position and provide an output indication of acceleration.