Abstract:
An MTPV thermophotovoltaic chip comprising a photovoltaic cell substrate, micron/sub-micron gap-spaced from a juxtaposed heat or infrared radiation-emitting substrate, with a radiation-transparent intermediate window substrate preferably compliantly adhered to the photovoltaic cell substrate and bounding the gap space therewith.
Abstract:
A method of making a micron gap thermal photovoltaic device wherein at least one standoff is formed on a photovoltaic substrate, a sacrificial layer is deposited on the photovoltaic substrate and about the standoff, an emitter is attached to the standoff and has a lower planar surface separated from the photovoltaic substrate by the sacrificial layer, and the sacrificial layer is removed to form a sub-micron gap between the photovoltaic substrate and the lower planar surface of the emitter.
Abstract:
An accelerometer having one or more flexure stops for increasing the stiffness of the flexures when the accelerometer is subjected to relatively high acceleration. A wrap-around proof mass is suspended over a substrate by anchor posts and a plurality of flexures. In one embodiment, the proof mass has a rectangular frame including top and bottom beams extending between left and right beams and a central crossbeam extending between the left and right beams. Proof mass sense electrodes are cantilevered from the top, bottom and central beams and are interleaved with excitation electrodes extending from adjacent excitation electrode supports. Each of the flexure stops includes a pair of members extending along a portion of a respective flexure. Also described is a three axis accelerometer triad device and a dissolved wafer process for fabricating the devices described herein.
Abstract:
A gimballed vibrating wheel gyroscope for detecting rotational rates in inertial space. The gyroscope includes a support oriented in a first plane and a wheel assembly disposed over the support parallel to the first plane. The wheel assembly is adapted for vibrating rotationally at a predetermined frequency in the first plane and is responsive to rotational rates about a coplanar input axis for providing an output torque about a coplanar output axis. The gyroscope also includes a post assembly extending between the support and the wheel assembly for supporting the wheel assembly. The wheel assembly has an inner hub, an outer wheel, and spoke flexures extending between the inner hub and the outer wheel and being stiff along both the input and output axes. A flexure is incorporated in the post assembly between the support and the wheel assembly inner hub and is relatively flexible along the output axis and relatively stiff along the input axis. With this arrangement, the wheel assembly is gimballed on the support. More particularly, the post flexure flexes in response to the output torque; whereas, the spoke flexures allow for the rotational vibration in the first plane. Also provided is a single semiconductor crystal fabrication technique which allows for improved device manufacture.
Abstract:
A double gimbal micromachined gyroscopic transducer is provided in a substrate having a pit extending downwardly from a top surface of the substrate. A gyroscopic transducer element suspended above the pit comprises an outer sense gimbal plate integral with the substrate, coupled to the substrate by a pair of flexible elements attached to opposite ends of the plate. The flexible elements are axially aligned to permit oscillatory motion about a sense axis passing through the flexible elements. The gyroscopic transducer further includes an inner drive gimbal plate integral with and interior to the sense gimbal plate. The drive gimbal plate is coupled to the sense gimbal plate by a second pair of flexible elements along an axis orthogonal to the first pair of flexible elements. The drive gimbal plate also includes a balanced mass generally centrally located on the drive gimbal plate. Also included are drive and sense electronics, for energizing the drive gimbal plate to oscillate about the drive axis, and for sensing any movement of the sense gimbal plate indicative of an angular rate about an input axis. The sense electronics includes a sense electrode disposed so as not to be in close proximity to and interfere with free oscillatory motion of the drive gimbal plate.
Abstract:
A monolithic, micromechanical vibrating string accelerometer with a trimmable resonant frequency is fabricated from a silicon substrate which has been selectively etched to provide a resonant structure suspended over an etched pit. The resonant structure comprises an acceleration sensitive mass and at least two flexible elements having resonant frequencies. Each of the flexible elements is disposed generally colinear with at least one acceleration sensitive axis of the accelerometer. One end of at least one of the flexible elements is attached to a tension relief beam for providing stress relief of tensile forces created during the fabrication process. Mass support beams having a high aspect ratio support the mass over the etched pit while allowing the mass to move freely in the direction colinear with the flexible elements. Also disclosed is a method for fabricating such an accelerometer with high aspect ratio tension relief and mass support beams.
Abstract:
A method of fabrication of micromechanical devices enables the production of large area micromechanical transducer structures which are symmetric, stress balanced structures relatively devoid of geometric distortions. Micromechanical transducer structures are fabricated implementing processes and physical characteristics which overcome the unbalanced stresses occurring in high concentration diffusion planar structures that cause problematic geometric distortions that restrict physical size. Large increases in the practical size of micromechanical devices which may be fabricated are achieved while permitting greater depths of structural features, without the resultant concentration and stress distortions. Multilevel, balanced stress structures can be created which are of varying geometries at each level to produce a "sculpted" structure.
Abstract:
A semiconductor chip gyroscopic transducer is disclosed in which a semiconductor element is supported in an outer element by a flexible linkage system which is in turn supported in a frame of semiconductor material by another flexible linkage system which permits the element to vibrate about two axes relative to the frame. Balanced torque forces are provided by a system of buried and bridge electrodes. The stress and tension resulting from doping of these elements are released by a flexure beam. The inertial mass of the inner element is balanced by formation in a central pin and on-chip electronics avoids the capacitive loading effects of long runs from high impedance sources.Flexure footings are intergrated with the structure adding stability to flexures connecting the supported gyroscopic resonator element to the supporting structure, offsetting a rippling effect inherent in the oxide structure. Flexure grooves provide selective stiffness in the flexure. The bridge electrodes are additionally electrically isolated for electrical compatibility with gyroscope electronics.
Abstract:
A device, method and process of fabricating an interdigitated multicell thermo-photo-voltaic component that is particularly efficient for generating electrical energy from photons in the red and near-infrared spectrum received from a heat source in the near field. Where the absorbing region is germanium, the device is capable of generating electrical energy by absorbing photon energy in the greater than 0.67 electron volt range corresponding to radiation in the infrared and near-infrared spectrum. Use of germanium semiconductor material provides a good match for converting energy from a low temperature heat source. The side that is opposite the photon receiving side of the device includes metal interconnections and dielectric material which provide an excellent back surface reflector for recycling below band photons back to the emitter. Multiple cells may be fabricated and interconnected as a monolithic large scale array for improved performance.
Abstract:
A near-field energy conversion method, utilizing a sub-micrometer “near-field” gap between juxtaposed infrared radiation receiver and emitter surfaces, wherein compliant membrane structures, preferably fluid-filled, are interposed in the structure for maintaining uniform gap separation. Thermally resistant gap spacers are also used to maintain uniform gap separation. Means are provided for cooling a receiver substrate structure and for conducting heat to an emitter substrate structure. The gap may also be evacuated for more effective operation.