摘要:
A method for manufacturing a resistive memory element includes providing a storage layer comprising a resistance changeable material, said resistance changeable material comprising carbon; providing contact layers for contacting the storage layer, wherein the storage layer is disposed between a bottom contact layer and a top contact layer; and doping the resistance changeable material with a dopant material.
摘要:
In one embodiment, a method of storing data includes storing a first copy of data in a solid state memory and storing a second copy of the data in a hard disk drive memory substantially simultaneously with the storing the first copy. In another embodiment, a system for storing data includes a solid state memory, at least one hard disk drive memory, and a controller for controlling storage of data in the solid state memory and the hard disk drive memory. Other methods, systems, and computer program products are also described according to various embodiments.
摘要:
For efficient track destage in secondary storage in a more effective manner, for temporal bits employed with sequential bits for controlling the timing for destaging the track in a primary storage, the temporal bits and sequential bits are transferred from the primary storage to the secondary storage. The temporal bits are allowed to age on the secondary storage.
摘要:
For movement of partial data segments within a computing storage environment having lower and higher levels of cache by a processor, a whole data segment containing one of the partial data segments is promoted to both the lower and higher levels of cache. Requested data of the whole data segment is split and positioned at a Most Recently Used (MRU) portion of a demotion queue of the higher level of cache. Unrequested data of the whole data segment is split and positioned at a Least Recently Used (LRU) portion of the demotion queue of the higher level of cache. The unrequested data is pinned in place until a write of the whole data segment to the lower level of cache completes.
摘要:
Method for operating a storage device with a tape and a head wherein the head comprises a first and a second read element. Each read element is operable to detect servo-pattern of a particular servo band. The first and the second read element are arranged such that the tape at first passes one of both read elements and subsequently passes the other of both read elements when the tape moves in a predetermined longitudinal direction. A tape transport direction of the tape along the longitudinal direction is determined. The first read element is selected dependent on the determined tape transport direction, when the determined tape transport direction represents a direction where the tape at first passes the first read element and subsequently the second read element. Otherwise the second read element is selected. A position error signal is determined dependent on the selected read element.
摘要:
A method is provided that comprises a step of programming the PCM cell to have a respective definite cell state by at least one current pulse flowing to the PCM cell, said respective definite cell state being defined at least by a respective definite resistance level, a step of controlling said respective current pulse by a respective bitline pulse and a respective wordline pulse, and a step of controlling said respective bitline pulse and said respective wordline pulse dependent on an actual resistance value of the PCM cell and a respective reference resistance value being defined for the definite resistance level.
摘要:
Exemplary embodiments include a method for reducing access contention in a flash-based memory system, the method including selecting a chip stripe in a free state, from a memory device having a plurality of channels and a plurality of memory blocks, wherein the chip stripe includes a plurality of pages, setting the ship stripe to a write state, setting a write queue head in each of the plurality of channels, for each of the plurality of channels in the flash stripe, setting a write queue head to a first free page in a chip belonging to the channel from the chip stripe, allocating write requests according to a write allocation scheduler among the channels, generating a page write and in response to the page write, incrementing the write queue head, and setting the chip stripe into an on-line state when it is full.
摘要:
A mechanism is provided for controlling a solid state storage device in which the solid state storage comprises erasable blocks each comprising a plurality of data write locations. Input data is stored in successive groups of data write locations, each group comprising write locations in a set of erasable blocks in each of a plurality of logical subdivisions of the solid state storage. The input data is error correction encoded such that each group contains an error correction code for the input data in that group. Metadata, indicating the location of input data in the solid state storage, is maintained in memory, An indication of validity of data stored in each data write location is also maintained, Prior to erasing a block, valid input data is recovered from the or each said group containing write locations in that block. The recovered data is then re-stored as new input data.
摘要:
In one embodiment, a method of storing data includes storing a first copy of data in a solid state memory and storing a second copy of the data in a hard disk drive memory substantially simultaneously with the storing the first copy. In another embodiment, a system for storing data includes a solid state memory, at least one hard disk drive memory, and a controller for controlling storage of data in the solid state memory and the hard disk drive memory. Other methods, systems, and computer program products are also described according to various embodiments.
摘要:
Exemplary embodiments include a method for reducing access contention in a flash-based memory system, the method including selecting a chip stripe in a free state, from a memory device having a plurality of channels and a plurality of memory blocks, wherein the chip stripe includes a plurality of pages, setting the ship stripe to a write state, setting a write queue head in each of the plurality of channels, for each of the plurality of channels in the flash stripe, setting a write queue head to a first free page in a chip belonging to the channel from the chip stripe, allocating write requests according to a write allocation scheduler among the channels, generating a page write and in response to the page write, incrementing the write queue head, and setting the chip stripe into an on-line state when it is full.