Abstract:
Provided herein is an apparatus including a layer stack. A first granular metal layer overlies the layer stack, wherein the first granular metal layer includes first metal grains separated by voids. A first granular non-metal layer overlies the first granular metal layer, wherein the first granular non-metal layer includes first non-metal grains separated by a first segregant. A second granular non-metal layer overlies the first granular non-metal layer, wherein the second granular non-metal layer includes second non-metal grains separated by a second segregant. A second granular metal layer overlies the second granular non-metal layer, wherein the second granular metal layer includes second metal grains separated by a third segregant.
Abstract:
One embodiment described herein is directed to a method involving depositing a seed layer on a substrate, the seed layer comprising A1 phase FePt with a ratio of Pt of Fe greater than 1:1. A main layer is deposited on the seed layer, the main layer comprising A1 phase FePt with a ratio of Pt to Fe of approximately 1:1. A cap layer is deposited on the main layer, the cap layer comprising A1 phase FePt with a ratio of Pt to Fe of less than 1:1. The seed, main and cap layers are annealed to convert the A1 phase FePt to L10 phase FePt having a graded FePt structure of varying stoichimetry from approximately Fe50Pt50 adjacent a lower portion of the structure proximate the substrate to Fe>50Pt
Abstract:
One embodiment described herein is directed to a method involving depositing a seed layer on a substrate, the seed layer comprising A1 phase FePt with a ratio of Pt of Fe greater than 1:1. A main layer is deposited on the seed layer, the main layer comprising A1 phase FePt with a ratio of Pt to Fe of approximately 1:1. A cap layer is deposited on the main layer, the cap layer comprising A1 phase FePt with a ratio of Pt to Fe of less than 1:1. The seed, main and cap layers are annealed to convert the A1 phase FePt to L10 phase FePt having a graded FePt structure of varying stoichimetry from approximately Fe50Pt50 adjacent a lower portion of the structure proximate the substrate to Fe>50Pt
Abstract:
Various magnetic stack embodiments may be constructed with a soft magnetic underlayer (SUL) having a first thickness disposed between a substrate and a magnetic recording layer. A heatsink may have a second thickness and be disposed between the SUL and the magnetic recording layer. The first and second thicknesses may each be tuned to provide predetermined thermal conductivity and magnetic permeability throughout the data media.
Abstract:
Provided herein is an apparatus comprising a substrate; a continuous layer over the substrate comprising a first heat sink layer; and a plurality of features over the continuous layer comprising a second heat sink layer, a first magnetic layer over the second heat sink layer, and a second magnetic layer, wherein the first and second magnetic layers are configured to provide a temperature-dependent, exchange spring mechanism.
Abstract:
A resistive electromagnet assembly comprises a pair of coils with a gap defined between the coils. The resistive electromagnet assembly is configured to generate a field having a magnetic flux density of at least about 4 Tesla and at a sweep rate to complete a hysteresis loop in less than about 1 minute. A support assembly is configured to support a sample of magnetic material within the gap. An optics module is configured to expose a test region of the magnetic material sample to an optical beam probe while the test region is subjected to the field and to receive a reflected beam from the test region. A processor is coupled to the optics module and configured to measure one or more properties of the magnetic material using the received reflected beam.
Abstract:
A perpendicular magnetic media includes a substrate, a patterned template, a seed layer and a magnetic layer. The patterned template is formed on the substrate and includes a plurality of growth sites that are evenly spaced apart from each other. The seed layer is formed over the patterned template and the exposed areas of the substrate. Magnetic material is sputter deposited onto the seed layer with one grain of the magnetic material nucleated over each of the growth sites. The grain size distribution of the magnetic material is reduced by controlling the locations of the growth sites which optimizes the performance of the perpendicular magnetic media.
Abstract:
The embodiments disclose at least one predetermined patterned layer configured to eliminate a physical path of lateral thermal bloom in a recording device, at least one gradient layer coupled to the patterned layer and configured to use materials with predetermined thermal conductivity for controlling a rate of dissipation and a path coupled to the gradient layer and configured to create a path of least thermal conduction resistance for directing dissipation along the path, wherein the path substantially regulates and prevents lateral thermal bloom.
Abstract:
A stack includes a substrate, a magnetic recording layer having a columnar structure, and an interlayer disposed between the substrate and the magnetic recording layer. The columnar structure includes magnetic grains separated by a crystalline segregant or a combination of crystalline and amorphous segregants.
Abstract:
Provided herein is an apparatus comprising a substrate; a continuous layer over the substrate comprising a first heat sink layer; and a plurality of features over the continuous layer comprising a second heat sink layer, a first magnetic layer over the second heat sink layer, and a second magnetic layer, wherein the first and second magnetic layers are configured to provide a temperature-dependent, exchange spring mechanism.