Abstract:
The purpose of the present invention is to be able to simultaneously generate three or more sets of CSI within a predetermined time interval, without degrading the accuracy of the CSI, to achieve CoMP control for flexible switching of base stations. At predetermined intervals or at timing coincident with reception of trigger information, a generation unit uses a CSI-RS resource to measure a desired signal component and interference component, and generate CSI. A transmission unit transmits control information including the CSI. During a given interval (for example, during four sub-frames) following reception of trigger information, the generation unit does not measure the interference component, instead using the most recent previously measured interference component, to measure the channel quality.
Abstract:
A Method of scrambling reference signals, device and user equipment using the method are provided. In the method, a plurality of layers of reference signals assigned on predetermined radio resource of a plurality of layers of resource blocks with the same time and frequency resources are scrambled, the method comprising: an orthogonalizing step of multiplying each layer of reference signal selectively by one of a plurality of orthogonal cover codes (OCCs) with the same length wherein the OCC multiplied to a first layer of reference signal can be configured as different from those multiplied to other layers of reference signals; and a scrambling step of multiplying all of symbols obtained from the OCC multiplied to each of the other layers of reference signals by a symbol-common scrambling sequence wherein the symbol-common scrambling sequences can be different from each other for reference signals multiplied by the same OCC.
Abstract:
To measure the channel quality of the own cell accurately in a condition where there is no interference from a neighbor cell. A wireless communication terminal according to the invention is a wireless communication terminal to be connected to a base station for transmitting and receiving data to/from the base station, the wireless communication terminal including: a receiver that receives a signal which includes control information provided for measuring a channel quality of own cell from the base station; an extractor that extracts the control information from the signal received by the receiver; a measurement section that measures, on the basis of the control information, the channel quality of the own cell in a domain where a neighbor cell does not transmit a signal; and a transmitter that transmits a measurement result of the channel quality of the own cell measured by the measurement section, to the base station.
Abstract:
An integrated circuit includes circuitry, which, in operation, controls transmitting downlink data to a terminal apparatus; receiving a plurality of transport blocks which are transmitted in a same time period using a same frequency band in a spatial multiplexing scheme, wherein a same acknowledgement information (ACK/NACK) relating to an error detection result of the downlink data is scrambled with different scrambling schemes respectively for the plurality of transport blocks and the respectively scrambled ACK/NACK is multiplexed with data on respective ones of the plurality of transport blocks, and channel quality information (CQI) of a downlink channel is multiplexed with the data on only one transport block of the plurality of transport blocks by the terminal apparatus; and extracting the ACK/NACK and the CQI from the received plurality of transport blocks.
Abstract:
A data alignment method capable of preventing degradation in demodulation performance due to variation in signal qualities when a data signal to which a Turbo code is applied is transmitted simultaneously from a plurality of cells. The method divides signal components to be used for data alignment into resources common to all the cells and resources dependent on the cells and transmits encoded and rate-matched data with the first half thereof aligned to the resources common to all the cells and the second half thereof aligned to the resources dependent on the cells.
Abstract:
To suppress concentration of channel quality information requests and reports in a case of discontinuously transmitting reference signals at specific resources in a time domain, and thereby preventing degradation in throughput. A transmission apparatus transmits an instruction of CSI request distributed for each reception apparatus in a subframe concurrently with or earlier than a reference signal CSI-RS to each of reception apparatuses. Each of the reception apparatuses detects the CSI request from the transmission apparatus and calculates CSI from a channel estimation value of CSI-RS received thereafter. Then, the reception apparatus identifies CSI report subframe of the own apparatus from CSI report interval information of a given time interval notified in advance, the subframe in which the CSI request is detected and transmission timing of CSI-RS, and transmits a feedback signal including CSI report value by using PUSCH at the timing of the CSI report subframe.
Abstract:
Provided are a radio communication terminal apparatus and a radio transmission method by which intersymbol interference of DM-RS of a CoMP terminal and a Non-CoMP terminal can be reduced. A CoMP set setting unit (102) sets the cell IDs of all cells in the CoMP set in a cell selection unit (104), and a serving cell setting unit (103) sets the cell ID of the serving cell in the cell selection unit (104). The cell selection unit (104) selects the cell ID having a number closest to the cell ID of the serving cell from the cells in the CoMP set. A sequence information calculation unit (106) derives a sequence group number from the selected cell ID, and the sequence information calculation unit (106) calculates a sequence number from the derived sequence group number and a transmission bandwidth of the DM-RS.
Abstract:
Where first and second reference signals for a first and second communication system, respectively, are transmitted, resources that affect a reception apparatus compatible only with the first communication system can be minimized, and the throughput can be prevented from being deteriorated. As resources for a reference signal CSI-RS for LTE-A, last half symbols in a time direction of a resource unit RB/Sub-frame defined in a frequency-time domain are used, and the CSI-RS is allocated in a position up to the last two symbols or in the last symbol, or the like, of a particular RB/Sub-frame and transmitted when a reference signal 4RS for LTE is transmitted to a reception apparatus in addition to transmitting CSI-RS for LTE-A. The reception apparatus receives CSI-RS allocated in the last half symbol of RB/Sub-frame based on CSI-RS allocation information, measures channel quality by using this CSI-RS, and transmits and reports feedback information.
Abstract:
Where first and second reference signals for a first and second communication system, respectively, are transmitted, resources that affect a reception apparatus compatible only with the first communication system can be minimized, and the throughput can be prevented from being deteriorated. As resources for a reference signal CSI-RS for LTE-A, last half symbols in a time direction of a resource unit RB/Sub-frame defined in a frequency-time domain are used, and the CSI-RS is allocated in a position up to the last two symbols or in the last symbol, or the like, of a particular RB/Sub-frame and transmitted when a reference signal 4RS for LTE is transmitted to a reception apparatus in addition to transmitting CSI-RS for LTE-A. The reception apparatus receives CSI-RS allocated in the last half symbol of RB/Sub-frame based on CSI-RS allocation information, measures channel quality by using this CSI-RS, and transmits and reports feedback information.
Abstract:
Disclosed are a wireless communication base station device and a division number determination method that improve the frequency diversity effect while maintaining channel estimation accuracy regardless of the number of divisions in the frequency domain of a transmission signal from a wireless communication terminal device. A determination unit determines the number of divisions in the frequency domain of a transmission signal from a wireless communication terminal device. Here, the determination unit increases the number of divisions in the frequency domain of the transmission signal from the wireless communication terminal device as the number of pilot blocks included in the transmission signal increases. In addition, a scheduling unit schedules allocation to the frequency resources of the divided transmission signal according to the number of divisions determined by the determination unit.