Abstract:
A liquid crystal display system including a signal processing device uses interpolation to generate an intermediate image frame using previous image frame data and present image frame data. The system converts data of the intermediate image frame into transposed image data that is to be used to drive a liquid crystal display panel and display a corresponding image. The transposed image data and the present image data are subjected to a prespecified DCC process (dynamic capacitance compensation process) to thereby generate respective first and second compensation image data. Since the first compensation image data is generated based on the transposed image data and the transposition is configured to prevent over-compensation by the DCC process, over-compensation by the dynamic capacitance compensation process can be reduced or prevented.
Abstract:
A gamma reference voltage generator includes a first resistor string, black voltage setters, a selector, and a second resistor string. The first resistor string receives a first reference voltage and a second reference voltage. The black voltage setters extract a plurality of black candidate voltages from the first resistor string. The selector selects one of the black candidate voltages as a black gamma voltage based on a selection signal. The second resistor string receives a first voltage corresponding to one of the black candidate voltages and a second voltage extracted from the first resistor string. In addition, the gamma reference voltage generator includes gamma voltage setters that extract a plurality of gamma voltages from the second resistor string.
Abstract:
A method of image processing includes extracting first image information from an input image by analyzing the input image, determining, based on the first image information, whether to utilize a high dynamic range (HDR) function for the input image, setting an image output mode based on a result of the determination, setting a reference tone curve for the input image based on the image output mode, and generating an output image by converting the input image based on the reference tone curve.
Abstract:
A method of driving a transparent liquid crystal display apparatus includes a transparent display panel including a brightness sensor and a timing controller. The timing controller includes a YCbCr converter configured to convert input pixel data to YCbCr data, a histogram extractor configured to receive the YCbCr data and generate histogram information about the number of values corresponding to each of brightness data, a grayscale analysis unit configured to analyze the histogram information and determine a type of an input image, an image processer configured to process the YCbCr data according to the type of the input image and the ambient brightness information and generate an output YCbCr′ data, and an RGB converter configured to convert the output YCbCr′ data to output image data.
Abstract:
A timing controller for a display apparatus includes a polarity comparison part and a compensation part. The polarity comparison part compares a first polarity of a first data voltage with a second polarity of a second data voltage, the first data voltage corresponding to a first pixel in a first frame and generated based on a first gamma voltage, the second data voltage corresponding to the first pixel in a second frame and generated based on a second gamma voltage. The compensation part compensates the second data voltage based on a first look-up table, if the first polarity is the same as the second polarity, and compensates the second data voltage based on a second look-up table, if the first polarity is different from the second polarity.
Abstract:
An image processor, a display device including the same, and a method for driving display panel using the same are disclosed. In one aspect, the display device includes an image shifter configured to shift a data signal by at least one pixel based at least in part on a shift start signal and output the shifted data signal and a shift direction signal. The display device also includes an image buffer configured to output current data and previous data based at least in part on the shifted data signal and the shift direction signal. The display device also includes an image mixer configured to mix the current data and the previous data over M frames starting at a start frame when the shift start signal is received and output image data, M being a natural number.
Abstract:
Provided is a display apparatus. The display apparatus includes a plurality of gate lines, a plurality of data lines, and first to fourth pixels. The first to fourth pixels are disposed between two data lines adjacent to each other. The first and second pixels are disposed between an i-th gate line and an (i+1)-th gate line. The third and fourth pixels are disposed between a j-th gate line and a (j+1)-th gate line. The first to fourth pixels may have reference connection data lines different from each other or reference connection gate lines different from each other.
Abstract:
Gamma applied data generating circuit includes motion vector extractor, gamma pattern generator, first gamma applier, second gamma applier, and output converter. Motion vector extractor extracts motion vector of object. Gamma pattern generator generates first gamma pattern corresponding to first motion vector value and second gamma pattern corresponding to second motion vector value from first time point. Value of motion vector is changed from first motion vector value to second motion vector value at first time point. First and second gamma appliers generate first and second data by applying first and second gamma pattern to input data, respectively. Output converter outputs sum of first data times first weight and second data times second weight as gamma applied data. From first time point to second time point, output converter converts first weight from 1 to 0 and converts second weight from 0 to 1.
Abstract:
A method of driving a display panel is proposed. The method includes determining whether an input image data represents a video image or a static image, determining whether an image transition occurs in the input image data when the input image data represents the static image, and inserting a plurality of image sticking compensation frames between normal frames in a low frequency driving when the image transition occurs in the input image data between the normal frames. The number of the image sticking compensation frame may be properly adjusted during a cycle of low frequency driving.
Abstract:
A display device including a display panel which includes pixels connected to gate lines and data lines; and an image display control unit controlling an input image signal to be converted into a data signal and, thereby, display an image on the display panel. The image display control unit outputs the data signal so that a position of an image being displayed on the display panel is changed when the image signal is the same for a preselected time period and sets a next position change time period of the image according to a distance between an original position of the image and a changed position of the image.