Abstract:
A display apparatus includes: a substrate having a display area and a peripheral area extending around a periphery of the display area; a pixel electrode in the display area; a pixel-defining layer on the pixel electrode and having a first sub-opening exposing a central portion of the pixel electrode; a bank layer on the pixel-defining layer and having a third sub-opening exposing a central portion of the pixel electrode; a first conductive layer on the bank layer and having a tip protruding outwardly beyond the pixel electrode and the third sub-opening; an emission layer over the pixel electrode and the first conductive layer and having an opening exposing a portion of an upper surface of the first conductive layer; and an opposite electrode on the emission layer and in direct contact with the first conductive layer through the opening in the emission layer.
Abstract:
A display device includes a base substrate, a buffer layer disposed on the base substrate, an active layer disposed on the buffer layer, a first gate insulation layer disposed on the active layer, a first conductive layer disposed on the first gate insulation layer and which is a single-layer including an aluminum alloy, a second gate insulation layer disposed on the first conductive layer, a second conductive layer disposed on the second gate insulation layer and which is a single-layer including an aluminum alloy, an insulation interlayer disposed on the second conductive layer, and a third conductive layer disposed on the insulation interlayer, directly contacting the first conductive layer through a first gate contact hole defined in the insulation interlayer and the second gate insulation layer, and directly contacting the second conductive layer through a second gate contact hole defined in the insulation interlayer.
Abstract:
A thin-film transistor substrate includes a semiconductor layer disposed on a substrate, a gate insulating layer disposed on the semiconductor layer, a first electrode that at least partly overlaps the semiconductor layer, wherein the gate insulating layer is disposed between the first electrode and the semiconductor layer, a plurality of thin-film layers disposed on the first electrode, and a second electrode that at least partly overlaps the first electrode, wherein the plurality of thin-film layers are disposed between the second electrode and the first electrode, wherein at least one of the plurality of thin-film layers includes amorphous silicon.
Abstract:
A display panel including a glass substrate having an opening area, and a display area at least partially surrounding the opening area; a thin film transistor on the display area including a semiconductor layer and a gate electrode; a display element electrically connected to the thin film transistor; a multi-layer including an insulating layer and a lower insulating layer. The insulating layer is between the glass substrate and the display element and the lower insulating layer is between the glass substrate and the insulating layer; and a thin-film encapsulation layer covering the display element including an inorganic encapsulation layer and an organic encapsulation layer. The multi-layer includes a first groove between the opening area and the display area. A first width of a portion of the first groove in the lower insulating layer is greater than a second width of a portion of the first groove in the insulating layer.
Abstract:
A method of manufacturing a flexible display device includes forming a graphene adhesive layer on a carrier substrate, forming a flexible substrate on the graphene adhesive layer, forming a first barrier layer on the flexible substrate, forming a display element part on the first barrier layer, forming a protective film on the display element part, separating the flexible substrate from the carrier substrate, removing a remaining portion of the graphene adhesive layer from a surface of the flexible substrate, and forming a second barrier layer on the surface of the flexible substrate, after removing the remaining portion of the graphene adhesive layer from the surface of the flexible substrate.
Abstract:
A display apparatus includes a substrate including a polymer resin. A portion of the substrate including an upper surface of the substrate is doped with 1×1020 to 1×1023 dopants per 1 cm3. A barrier layer is positioned above the upper surface of the substrate. A buffer layer is positioned above the barrier layer. A thin film transistor is positioned above the buffer layer. A display device is electrically connected to the thin film transistor.
Abstract:
A display apparatus includes a substrate, a plurality of pixel electrodes disposed over the substrate, first metal patterns disposed over the plurality of pixel electrodes and between adjacent pixel electrodes, a first insulating layer disposed over the first metal patterns, second metal patterns disposed over the first insulating layer, in which each second metal pattern is electrically connected to one of the first metal patterns through a contact hole in the first insulating layer, and a light-blocking layer covering the second metal patterns and including first openings respectively corresponding to one of the plurality of pixel electrodes, in which each of the first openings exposes a portion of the first insulating layer.
Abstract:
Provided are a deposition apparatus and a method of manufacturing an organic light-emitting display (OLED) apparatus, which are capable of reducing manufacturing time and manufacturing costs of the OLED apparatus. The method includes: turning a substrate such that a deposition surface of the substrate faces upward; depositing a first deposition layer on a deposition surface of a first donor mask while the deposition surface of the first donor mask faces downward; arranging the first donor mask and the substrate such that the first donor mask is above the substrate while the first deposition layer faces downward and the deposition surface of the substrate faces upward; depositing, on the deposition surface of the substrate, a part of the first deposition layer of the deposition surface of the first donor mask; and turning the substrate such that the deposition surface of the substrate faces downward.