Abstract:
A semiconductor nanocrystal particle including a transition metal chalcogenide represented by Chemical Formula 1, the semiconductor nanocrystal particle having a size of less than or equal to about 100 nanometers, and a method of producing the same: M1M2Cha3 Chemical Formula 1 wherein M1 is Ca, Sr, Ba, or a combination thereof, M2 is Ti, Zr, Hf, or a combination thereof, and Cha is S, Se, Te, or a combination thereof.
Abstract:
A cadmium free quantum dot including a semiconductor nanocrystal core and a semiconductor nanocrystal shell disposed on the core, wherein the quantum dot does not include cadmium and includes indium and zinc, the quantum dot has a maximum photoluminescence peak in a red light wavelength region, a full width at half maximum (FWHM) of the maximum photoluminescence peak is less than or equal to about 40 nanometers (nm), an ultraviolet-visible (UV-Vis) absorption spectrum of the quantum dot includes a valley between about 450 nm to a center wavelength of a first absorption peak, and a valley depth (VD) defined by the following equation is greater than or equal to about 0.2, a quantum dot polymer composite including the same, and a display device including the quantum dot-polymer composite: (Absfirst−Absvalley)/Absfirst=VD.
Abstract:
A process of synthesizing Ga—Se nanocrystals is provided, the process including: contacting a first precursor containing gallium with a second precursor containing selenium to obtain a Ga—Se single precursor; and reacting the Ga—Se single precursor in a solvent in the presence of a ligand compound, and optionally with a third precursor including an element (A) other than gallium and selenium, to prepare a Ga—Se nanocrystal represented by Chemical Formula 1: GaSexAy [Chemical Formula 1] wherein x is about 1.1 to 3, and y is about 0.1 to 4.
Abstract:
A film for a backlight unit including a semiconductor nanocrystal-polymer composite film including a semiconductor nanocrystal and a matrix polymer in which the semiconductor nanocrystal is dispersed, wherein the matrix polymer is a polymer produced by a polymerization of a multifunctional photo-curable oligomer, a mono-functional photo-curable monomer, and a multifunctional photo-curable cross-linking agent, the multifunctional photo-curable oligomer has an acid value of less than or equal to about 0.1 mg of KOH/g, and a content (A1) of a first structural unit derived from the multifunctional photo-curable oligomer, a content (A2) of a second structural unit derived from the mono-functional photo-curable monomer, and a content (A3) of a third structural unit derived from the multifunctional photo-curable cross-linking agent satisfy Equation 1: A1
Abstract:
A light emitting device including: a blue light source; a phosphor; and a semiconductor nanocrystal, and emits white light having a R1-R8 average color rendering index (“CRI”) of greater than or equal to about 90, and a R9 red color rendering index (R9) of greater than or equal to about 90.
Abstract:
A composition for preparing a semiconductor nanocrystal, the composition including (i) a Group II and/or Group III precursor, (ii) a Group VI and/or Group V precursor, (iii) an acid anhydride or acyl halide, and (iv) a solvent.
Abstract:
A backlight unit for a liquid crystal display device including an light emitting diode light source; a light conversion layer disposed apart from the light emitting diode light source, wherein the light conversion layer is configured to convert light emitted from the light emitting diode light source to white light and provide the white light to a liquid crystal panel; and a light guide panel disposed between the light emitting diode light source and the light conversion layer, wherein the light conversion layer includes a semiconductor nanocrystal and a polymer matrix, wherein the semiconductor nanocrystal is coated with a first polymer, and wherein the polymer matrix comprises a thermoplastic second polymer.
Abstract:
A quantum dot including a semiconductor nanocrystal core and a semiconductor nanocrystal shell disposed on the core and does not include cadmium, wherein the core includes a Group III-V compound, the quantum dot has a maximum photoluminescence peak in a green light wavelength region, a full width at half maximum (FWHM) of the maximum photoluminescence peak is less than about 50 nanometers (nm), and a difference between a wavelength of the maximum photoluminescence peak and a first absorption peak wavelength of the quantum dot is less than or equal to about 25 nanometers, and a production method thereof.
Abstract:
An electroluminescent device including a first electrode; a second electrode; and a light emitting layer disposed between the first electrode and the second electrode, wherein the light emitting layer includes a plurality of semiconductor nanoparticles and does not include cadmium, wherein the light emitting layer further includes a chemical species including a cyanide group including a cyano group, a cyanide anion, or a combination thereof, and wherein the chemical species includes a bond between a metal and the cyanide group.
Abstract:
A quantum dot including a core comprising a first semiconductor nanocrystal including a zinc chalcogenide and a semiconductor nanocrystal shell disposed on the surface of the core and comprising zinc, selenium, and sulfur. The quantum dot does not comprise cadmium, emits blue light, and may exhibit a digital diffraction pattern obtained by a Fast Fourier Transform of a transmission electron microscopic image including a (100) facet of a zinc blende structure. In an X-ray diffraction spectrum of the quantum dot, a ratio of a defect peak area with respect to a peak area of a zinc blende crystal structure is less than about 0.8:1. A method of producing the quantum dot, and an electroluminescent device including the quantum dot are also disclosed.