Abstract:
The present disclosure relates to a communication method and system for converging a 5th-Generation (5G) communication system for supporting higher data rates beyond a 4th-Generation (4G) system with a technology for Internet of Things (IoT). The present disclosure may be applied to intelligent services based on the 5G communication technology and the IoT-related technology, such as smart home, smart building, smart city, smart car, connected car, health care, digital education, smart retail, security and safety services. A method whereby a terminal transmits hybrid automatic repeat request (HARQ) acknowledgement (ACK)/negative ACK (NACK) information corresponding to downlink data received from a corresponding base station is provided.
Abstract:
A communication method and an apparatus for transferring interference-related control information in order to enhance reception performance of a user terminal that receives downlink signals in a cellular mobile communication system based on a long term evolution-advanced (LTE-A) system are provided. The method includes receiving transmission parameters of interference, which include information on a resource by which interference data is not transmitted, performing blind detection using the information on a resource by which interference data is not transmitted, performing error correction encoding using the transmission parameters of the interference and the blind detection result, and decoding the received data.
Abstract:
A communication method and a system for supporting a high data transmission rate are provided. The method and system fuses 5G communication systems with IoT technology to transmit data at a high rate after 4G systems. The communication method and system are applied to intelligent services, based on 5G communication technology and IoT related technology, for example, smart homes, smart buildings, smart cities, smart cars or connected cars, health care, digital education, retail business, security, safety-related services, etc. The method for transmitting control information by a user equipment (UE) includes generating uplink control information (UCI), identifying whether a physical uplink shared channel (PUSCH) is not configured to transmit on a primary cell (PCell), identifying whether the PUSCH is configured to transmit on at least one secondary cell (SCell) for licensed band, and transmitting, to a base station, the UCI according to the identification.
Abstract:
A discovery signal transmission/reception method and an apparatus for improving energy efficiency of the system are provided. The discovery signal transmission method of a base station in a mobile communication system according to the present disclosure includes acquiring a discovery signal configuration of a neighbor cell, transmitting the discovery signal configuration to a terminal, receiving a measurement report including a result of measurement on a discovery signal of the neighbor from the terminal, the measurement being performed based on the discovery signal configuration, and determining whether to make a handover decision for the terminal based on the measurement report. The discovery signal transmission/reception method of the present disclosure is advantageous in improving energy efficiency of a mobile communication system.
Abstract:
A technique for converging 5th Generation (5G) communication and Internet of Things (IoT) technologies is provided. The technique may be applied to intelligent services based on the 5G communication and IoT technologies. Further, a method by a terminal in a communication system is provided that includes receiving configuration information including information on an uplink control channel format, receiving downlink data on at least one of a first subframe of a primary cell and a first subframe of a secondary cell, and transmitting a response corresponding to the downlink data on a second subframe of the primary cell based on the configuration information and the first subframe of a secondary cell. According to the method, data may be transmitted/received through the cells operating in the different duplex modes simultaneously and an uplink control format optimized for uplink control channel transmission may be used, resulting in improvement of uplink resource utilization efficiency.
Abstract:
Methods and apparatuses are provided for transmitting channel information, by a User Equipment (UE). Information for at least one first type Channel Status Information Reference Signal (CSI-RS) and information for at least one second type CSI-RS from an eNB, are identified. A Physical Downlink Control Channel (PDCCH) including an indicator is received. The indicator triggers channel information report associated with a first type CSI-RS and a second type CSI-RS, among the at least one first type CSI-RS and the at least one second type CSI-RS. Channel information is generated based on the first type CSI-RS and the second type CSI-RS. The channel information is reported through a Physical Uplink Shared CHannel (PUSCH)
Abstract:
A method for transmitting a physical channel in a Time Division Duplex (TDD) communication system capable of carrier aggregation is provided for supporting aggregation of carriers having different TDD configurations. The communication method of a terminal in a TDD radio communication system accomplishing broadband through carrier aggregation of primary and secondary cells, of which aggregated carriers have different TDD Uplink-Downlink (UL-DL) configurations, includes receiving Physical Downlink Shared Channel (PDSCH) through the secondary cell, and transmitting acknowledgement information corresponding to the PDSCH to a base station, where acknowledgement information is transmitted on a Physical Uplink Control CHannel (PUCCH) of the primary cell.
Abstract:
A method for transmitting a physical channel in a Time Division Duplex (TDD) communication system capable of carrier aggregation is provided for supporting aggregation of carriers having different TDD configurations. The communication method of a terminal in a TDD radio communication system accomplishing broadband through carrier aggregation of primary and secondary cells, of which aggregated carriers have different TDD Uplink-Downlink (UL-DL) configurations, includes receiving Physical Downlink Shared Channel (PDSCH) through the secondary cell, and transmitting acknowledgement information corresponding to the PDSCH to a base station, where acknowledgement information is transmitted on a Physical Uplink Control CHannel (PUCCH) of the primary cell.
Abstract:
A method for a dual connectivity-enabled terminal which receives downlink data from at least one of a macro and a pico base station to transmit uplink control information corresponding to downlink data is provided. The method includes receiving the downlink data from a base station, determining whether the terminal is configured with a secondary cell group (SCG), determining, if the terminal is configured with the SCG, a size of a soft buffer per code block per cell based on a number of configured serving cells of the terminal, and storing the received downlink data in the soft buffer based on the size of the soft buffer per code block per cell, wherein the configured serving cells are included in a master cell group (MCG) and the SCG.
Abstract:
A communication method and an apparatus for transferring interference-related control information in order to enhance reception performance of a user terminal that receives downlink signals in a cellular mobile communication system based on a long term evolution-advanced (LTE-A) system are provided. The method includes receiving transmission parameters of interference, which include information on a resource by which interference data is not transmitted, performing blind detection using the information on a resource by which interference data is not transmitted, performing error correction encoding using the transmission parameters of the interference and the blind detection result, and decoding the received data.