摘要:
In a dehydrogenation process a hydrocarbon stream comprising at least one non-aromatic six-membered ring compound and at least one five-membered ring compound is contacted with a dehydrogenation catalyst produced by a method comprising treating the support with a liquid composition comprising the dehydrogenation component or a precursor thereof and at least one organic dispersant selected from an amino alcohol and an amino acid. The contacting is conducted under conditions effective to convert at least a portion of the at least one non-aromatic six-membered ring compound in the hydrocarbon stream to benzene and to convert at least a portion of the at least one five-membered ring compound in the hydrocarbon stream to paraffins.
摘要:
The invention includes a method for impregnating a molecular sieve primary catalyst with an aromatic co-catalyst, the method comprising contacting the small pore molecular sieve primary catalyst having a porous framework structure with a combination of from at least 50 wt % to about 99.9 wt % of an aromatic co-catalyst and from about 0.1 wt % to less than 50 wt % of a polar impregnation agent containing one or more heteroatoms selected from the group consisting of nitrogen, oxygen, sulfur, phosphorus, and boron, under conditions sufficient to impregnate the porous framework structure of the primary catalyst with the aromatic co-catalyst (and optionally also with the polar impregnation agent), thus forming an integrated catalyst system. Methods for converting oxygenates to olefins using said integrated catalyst system are also described herein.
摘要:
This invention relates to a process and the product thereof for preparing, a molecular sieve catalyst composition, comprising a mixture of: a first quantity of molecular sieve particles, having an 8-ring or larger structure, and a pore size of from about 3 angstroms to about 15 angstroms; and a second quantity of metal carbonate particles; the mixture having been calcined at a temperature of at least about 200° C. for at least about 1 second.
摘要:
The invention relates to a conversion process for making olefin(s) using a molecular sieve catalyst composition. More specifically, the invention is directed to a process for converting a feedstock comprising an oxygenate in the presence of a molecular sieve catalyst composition, wherein the feedstock is free of or substantially free of metal salts.
摘要:
The present invention provides various processes for producing methanol and ethanol, preferably in a mixed alcohol stream. In one embodiment, the invention includes directing syngas to a synthesis zone wherein the syngas contacts a methanol synthesis catalyst and an ethanol synthesis catalyst (either a homologation catalyst or a fuel alcohol synthesis catalyst) under conditions effective to form methanol and ethanol. The methanol and ethanol, in a desired ratio, are directed to an oxygenate to olefin reaction system for conversion thereof to ethylene and propylene in a desired ratio. The invention also relates to processes for varying the weight ratio of ethylene to propylene formed in an oxygenate to olefin reaction system.
摘要:
This invention is directed to methods of converting oxygenates to olefin products. The methods provided include steps for protecting against deactivation of active molecular sieve catalysts during the conversion process. In particular, the invention provides for methods of regenerating coked catalyst to minimize catalyst deactivation due to contact with moisture.
摘要:
This invention is directed to a process for converting oxygenate to olefin product at an increased prime olefin selectivity (i.e., increased ethylene and/or propylene content) compared to conventional systems. The increase in ethylene and/or propylene content of the produced olefin product is accomplished using a reaction system that has at least two stages. Any number of stages can used in the entire process, as long as there are at least two stages in series and the temperature of any subsequent stage in series is lower than that of the preceding stage.
摘要:
Disclosed is a method and apparatus for reducing the amount of metal catalyzed side-reaction byproducts formed in the feed vaporization and introduction system of a methanol to olefin reactor system by monitoring and/or maintaining the temperature of at least a portion of the feed vaporization and introduction system and/or of the feedstock contained therein below about 400° C., 350° C., 300° C., 250° C., 200° C. or below about 150° C. The temperature can be maintained in the desired range by jacketing at least a portion of the feed vaporization and introduction system, such as at least a portion of the feed introduction nozzle, with a thermally insulating material or by implementing a cooling system.
摘要:
This invention is directed to processes (i.e., methods) for making methanol compositions, and to processes (i.e., methods) of using the methanol compositions. The methanol compositions contain ethanol and are particularly suitable for contacting with an olefin forming catalyst to form an olefin stream.
摘要:
This invention concerns processes for converting oxygenates to olefins that include a step of pretreating catalyst used in the conversion reaction. A fresh or regenerated metalloaluminophosphate molecular sieve, which is low in carbon content, is pretreated with an aldehyde. The aldehyde forms a hydrocarbon cocatalyst within the pore structure of the molecular sieve, and the pretreated molecular sieve containing the co-catalyst is used to convert oxygenate to an olefin product.