摘要:
Semiconductor devices with transistors having different gate dielectric materials and methods of manufacture thereof are disclosed. One embodiment includes a semiconductor device including a workpiece, the workpiece including a first region and a second region proximate the first region. A first transistor is disposed in the first region of the workpiece, the first transistor having at least two first gate electrodes. A first gate dielectric is disposed proximate each of the at least two first gate electrodes, the first gate dielectric comprising a first material. A second transistor is disposed in the second region of the workpiece, the second transistor having at least two second gate electrodes. A second gate dielectric is disposed proximate each of the at least two second gate electrodes, the second gate dielectric comprising a second material. The second material is different than the first material.
摘要:
An integrated circuit device has a base area defining a longitudinal axis. Four in-line transistors, which are NMOS transistors in exemplary embodiments, are each centered on the longitudinal axis. Two off-set transistors, which are PMOS transistors in exemplary embodiments, are off-set to first and second sides of the longitudinal axis, respectively.
摘要:
Some embodiments discussed herein include a semiconductor having a source region, a drain region and an array of fins operatively coupled to a gate region controlling current flow through the fins between the source region and the drain region. The semiconductor also has at least one cooling element formed at least in part of a material having a heat capacity equal to or larger than the heat capacity of the material of the source region, drain region and array of fins, the cooling elements being in close vicinity to fins of the array of fins electrically isolated from the fins of the array, the source region and the drain region. Other embodiments are also disclosed.
摘要:
A fin-shaped structure is formed from a semiconductor material. The fin-shaped structure is processed to generate a tensile strain within the semiconductor material along a longitudinal direction of the fin.
摘要:
An integrated circuit device has a base area defining a longitudinal axis. Four in-line transistors, which are NMOS transistors in exemplary embodiments, are each centered on the longitudinal axis. Two off-set transistors, which are PMOS transistors in exemplary embodiments, are off-set to first and second sides of the longitudinal axis, respectively.
摘要:
Semiconductor devices with transistors having different gate dielectric materials and methods of manufacture thereof are disclosed. One embodiment includes a semiconductor device including a workpiece, the workpiece including a first region and a second region proximate the first region. A first transistor is disposed in the first region of the workpiece, the first transistor having at least two first gate electrodes. A first gate dielectric is disposed proximate each of the at least two first gate electrodes, the first gate dielectric comprising a first material. A second transistor is disposed in the second region of the workpiece, the second transistor having at least two second gate electrodes. A second gate dielectric is disposed proximate each of the at least two second gate electrodes, the second gate dielectric comprising a second material. The second material is different than the first material.
摘要:
A field effect transistor with a fin structure having a first and a second source/drain region; a body region formed within the fin structure and between the first and the second source/drain region; a metallically conductive region formed within a part of the first source/drain region, the metallically conductive region being adjacent to the body region or to a lightly doped region disposed between the body region and the first source/drain region; and a current ballasting region formed within a part of the second source/drain region.
摘要:
Identifying an operation that is critical to meeting a due date of a production order includes identifying operations associated with the production order, obtaining schedules for the operations using infinite production planning, obtaining start intervals for the operations based on the schedules, selecting a target operation from the operations, and determining whether the target operation is critical to meeting the due date based on whether the target operation can be scheduled, using finite production planning, in a start interval obtained for the target operation.
摘要:
An integrated circuit arrangement and method of fabricating the integrated circuit arrangement is described. The integrated circuit arrangement contains an insulating region and a sequence of regions which forms a capacitor. The sequence contains a near electrode region near the insulating region, a dielectric region, and a remote electrode region remote from the insulating region. The insulating region is part of an insulating layer arranged in a plane. The capacitor and an active component are arranged on the same side of the insulating layer and form a memory cell. The near electrode region and an active region of the component are arranged in a plane which lies parallel to the plane in which the insulating layer is arranged. A processor is also contained in the integrated circuit arrangement.
摘要:
A system and method are described for performing bucket-oriented capacity checks on resources to determine whether activities can be processed prior to a desired delivery date. For example, a method according to one embodiment of the invention comprises: subdividing a supply chain scheduling timeline for a particular resource into a plurality of time-buckets, each of the time buckets having a specified time period and a specified total capacity supply, the total capacity supply comprising utilized capacity supply which has been consumed by previously-scheduled activities and unutilized capacity supply which is available for processing new activities; in response to receiving a customer request for a specified activity to be completed by a desired date, determining if sufficient unutilized capacity supply exists within one of the time-buckets prior to the desired date; scheduling the specified activity on the resource within the time period defined by a particular time-bucket if sufficient unutilized capacity exists within the time-bucket; and reducing the unutilized capacity by an amount of capacity supply consumed by the specified activity.