摘要:
Techniques for sending signaling messages with beacon signals in a wireless communication network are described. In one design, a transmitter station may map a signaling message (e.g., a reduce interference request) to multiple code symbols. The transmitter station may select multiple resource elements from among a plurality of resource elements based on the multiple code symbols. In one design, each code symbol may be sent across frequency by selecting one of multiple subcarriers in one symbol period. In another design, each code symbol may be sent across time by selecting one of multiple symbol periods on one subcarrier. The transmitter station may generate a beacon signal having transmit power on the selected resource elements and no transmit power on remaining resource elements. The transmitter station may send the beacon signal to at least one receiver station.
摘要:
Methods, apparatuses, and computer program products are disclosed for encoding/decoding a wireless control signal. For encoding, control bits are received and encoded with a first error control code so as to create a first set of encoded bits. The encoded bits are then encoded with a second error control code so as to create a second set of encoded bits, which are modulated as beacon tones and subsequently transmitted. For decoding, beacon tones corresponding to a set of control bits are received and subsequently demodulated so as to ascertain a set of demodulated bits. The demodulated bits are then decoded with a decoder so as to ascertain a set of decoded bits. The decoded bits are then decoded with a second decoder so as to ascertain a second set of decoded bits, which includes the set of control bits.
摘要:
Disclosed is an electrode structure for a drift tube in IMS comprising a ring electrode, for each of two surfaces of the ring electrode, at least a part adjacent to the inner radius is formed into a cone, and the angles formed between the cones and the axis of the ring electrode are different from each other. The electrode structure of the present invention can alleviate, even eliminate, the accumulation of space charges in the drift tube. Such structure is particularly suitable when the electric field in the drift tube is low in strength or a great number of ions pass through. Meanwhile, the structure allows a significant decrease in the size of the outer radius of the electrode, while the inner radius remains constant. In this way, it is possible to effectively reduce the outline size of the drift tube and thus make the IMS compact.
摘要:
An array-based ion storage system and method are disclosed. The system comprises: an ion generation section; and an ion storage section comprising a first end electrode coupled to the ion generation section and formed as having a plurality of holes, a second end electrode formed as having a plurality of holes, an intermediate electrode formed as having a plurality of holes, a first insulator formed in the shape of a ring and sandwiched between the first end electrode and the intermediate electrode to insulate them from each other, and a second insulator formed in the shape of a ring and sandwiched between the intermediate electrode and the second end electrode to insulate them from each other. With the present invention, the ion storage section can be made thinner to facilitate consistency in ion extraction and reduce the spread of ion mobility spectrum peak. In addition, the first and second insulators each have a big hole, and thus the ions cannot bump onto the insulation material at both sides at the time of ion vibration or thermal movement in the storage space. Therefore, charge transfer and accumulation at the insulator and the subsequent discharge will not occur, suppressing instability of storage and loss of ions.
摘要:
Systems and methodologies are described that enable serving cell selection in a wireless network with a multiple antenna repeater operable to support MIMO communications. In one example, a repeater using orthogonal frequency division multiplexing on the downlink can be equipped to receive, by one or more receive antennas, one or more signals using one or more radio frequency (RF) isolation schemes. The repeater can further be equipped to amplify and delay the one or more signals using one or more combination schemes. Moreover, the repeater can be equipped to transmit, by one or more transmit antennas, the amplified and delayed one or more signals, wherein at least one of the one or more receive antennas or the one or more transmit antennas includes two or more antennas.
摘要:
An array-based ion storage system includes an ion generation section, and an ion storage section having a first end electrode coupled to the ion generation section and having multiple holes, a second end electrode having multiple holes, an intermediate electrode having multiple holes, a first insulator formed as a ring between the first end electrode and the intermediate electrode, and a second insulator formed as a ring between the intermediate electrode and the second end electrode. The ion storage section can be made thinner to facilitate consistency in ion extraction and reduce the spread of an ion mobility spectrum peak. The insulators have a big hole, and the ions cannot bump onto the insulation material during ion vibration or thermal movement in the storage space. Therefore, charge transfer and accumulation at the insulator and the subsequent discharge will not occur, suppressing instability of storage and loss of ions.
摘要:
An ion mobility spectrometer comprises an electrode and two storage electrodes disposed at the two opposite sides of the electrode respectively. Ions from an intermediate part between the two storage electrodes are stored and the stored ions are released from the storage electrodes by changing electric potentials of the two storage electrodes. The present invention further discloses a detecting method using an ion mobility spectrometer.
摘要:
Disclosed is an ion gate for a dual IMS and method. The ion gate includes an ion source, a first gate electrode placed on one side of the ion source, a second gate electrode placed on the other side of the ion source, a third gate electrode placed on the side of the first gate electrode away from the ion source, a fourth gate electrode placed on the side of the second gate electrode away from the ion source, wherein during the ion storage, the potential at the position on the tube axis of the ion gate corresponding to the first gate electrode is different from the potentials at the positions on the tube axis corresponding to the ion source and the third gate electrode, and the potential at the position on the tube axis corresponding to the second gate electrode is different from the potentials at the positions on the tube axis corresponding to the ion source and the fourth gate electrode. According to the present invention, after sample gas enters the ion gates, charge exchange with reaction ions occurs between the first gate electrode and the second electrode, and positive and negative ions are continuously stored into the storage regions for the positive and negative ions. This leads to an improvement of utility rate of ions. Then, the ions are educed in a step-wise manner from the storage regions for the positive and negative ions by a simple control of a combination of the electrodes.
摘要:
Disclosed is an electrode structure for a drift tube in IMS comprising a ring electrode, for each of two surfaces of the ring electrode, at least a part adjacent to the inner radius is formed into a cone, and the angles formed between the cones and the axis of the ring electrode are different from each other. The electrode structure of the present invention can alleviate, even eliminate, the accumulation of space charges in the drift tube. Such structure is particularly suitable when the electric field in the drift tube is low in strength or a great number of ions pass through. Meanwhile, the structure allows a significant decrease in the size of the outer radius of the electrode, while the inner radius remains constant. In this way, it is possible to effectively reduce the outline size of the drift tube and thus make the IMS compact.
摘要:
Techniques for sending low reuse preambles in a wireless network are described. In an aspect, a base station may send a low reuse preamble on reserved frequency resources to allow terminals to detect the base station even in the presence of strong interfering base stations. The base station may generate the low reuse preamble to include a pilot portion and a data portion. The base station may determine frequency resources reserved for sending low reuse preambles by base stations. The base station may then send the low reuse preamble on the reserved frequency resources, e.g., at a pseudo-randomly selected time. A terminal may detect for low reuse preambles sent by the base stations on the reserved frequency resources. The terminal may recover information for a base station from a detected low reuse preamble.