Abstract:
A semiconductor structure and a method for manufacturing the same are provided. Compared to conventional structures of thin film transistors, the structure of the present invention uses a patterned first metal layer as a data line, and a patterned second metal layer as a gate line. In a thin film transistor, a gate is also located in the patterned first metal layer, and is electrically connected to the gate line located in the patterned second metal layer through a contact hole. A source and a drain of the thin film transistor are electrically connected to the data line through a contact hole. The structure of the present invention increases a storage capacitance and an aperture ratio.
Abstract:
A transflective LCD panel includes a substrate, a first polycrystalline silicon pattern disposed in a reflection region, a second polycrystalline silicon pattern disposed in a peripheral region, an insulating layer disposed on the first and second polycrystalline silicon pattern and the substrate, a gate electrode disposed on the insulating layer in the reflection region, a common electrode disposed on the insulating layer in the peripheral region, a first inter-layer dielectric disposed on the insulating layer, the gate electrode and the common electrode, a reflection electrode disposed on the first inter-layer dielectric, a second inter-layer dielectric disposed on the first inter-layer dielectric and the reflection electrode, and a transmission electrode disposed on the second inter-layer dielectric and electrically connected to the reflection electrode through an opening of the second inter-layer dielectric. The second polycrystalline silicon pattern, the common electrode, and the insulating layer disposed therebetween form a storage capacitor.
Abstract:
A method for fabricating a semiconductor structure with a multi-layer storage capacitor is provided. A substrate having an active element area and a storage capacitor area is provided. By sequentially fabricating a semiconductor layer, a first inter-layer dielectric (ILD) layer, a gate and a first electrode, a source and a drain in the semiconductor layer in the active element area, a second ILD layer, a patterned conductive layer served as a pixel electrode, a patterned third ILD layer, a plurality of contact windows in the first, second and third ILD layers for exposing the source, the drain, parts of the patterned conductive layer and the first electrode, a second electrode and a source/drain conductive line, the semiconductor structure with the multi-layer storage is obtained in consequence.
Abstract:
A HomePlug apparatus is electrically connected to a power network and includes a HomePlug processing circuit and a surge protecting circuit. The HomePlug processing circuit is electrically connected to the surge protecting circuit. The surge protecting circuit has at least one inductor, at least one capacitor and at least one arrester. The inductor is electrically connected to the power network. The arrester is electrically connected to a ground. The inductor, the capacitor and the arrester are connected in series to guide a surge originated from the power network to the ground.
Abstract:
A piston assembly for a food extruder having a food reservoir with a chamber and an inner surface, a piston rod and a piston dish. The piston rod slidably extends into the chamber of the food reservoir. The piston dish is attached loosely to the piston rod and has a lower segment, an upper segment, an annular groove and a sealing ring. The lower segment has an outer surface with an inclined bottom edge. The upper segment is hollow and is formed with the lower segment. The annular groove is formed in the outer surface of the lower segment adjacent to the upper segment. The sealing ring is mounted in the annular groove and slidably presses against the inner surface of the food reservoir to form an airtight seal.
Abstract:
A wide frequency band planar antenna comprises an elongated portion, substantially parallel to a circumferential edge of a ground pattern and comprising one end connected to a feeding transmission line, wherein there is a gap between the elongated portion and the circumferential edge of the ground pattern; a body stub and an impedance-matching-adjusting pattern for adjusting an impedance matching between the wide frequency band planar antenna and the feeding transmission line; wherein the gap value is less than 2 mm so as to enable the wide frequency band antenna to operate at a wide range of frequencies ranging from 2.3 GHz to near 6 GHz, thereby allowing the wide frequency band antenna to be applied in both WiFi LAN and WiMAX MAN.
Abstract:
A switched beam smart antenna apparatus is disclosed including: a first, a second, a third, a fourth, a fifth, a sixth, a seventh, and an eighth beam adjusting elements; a first, a second, a third, and a fourth beam control modules; a first, a second, a third, and a fourth radiation strips positioned within an area surrounded by the first to eighth beam adjusting elements; and a radiation strip control module for selecting either the first and second radiation strips or the third and fourth radiation strips to transmit signals. When the first beam control module conducts the first and second beam adjusting elements, the third beam control module does not conduct the fifth and sixth beam adjusting elements. When the second beam control module conducts the third and fourth beam adjusting elements, the fourth beam control module does not conduct the seventh and eighth beam adjusting elements.
Abstract:
An array structure, which includes a TFT, a passivation layer, a pixel electrode, a first connecting layer and a first spacer is provided. The TFT includes a gate, a source and a drain. The passivation layer overlays the TFT. The pixel electrode is located on the passivation layer. The first connecting layer is located on the pixel electrode and electrically connected to the pixel electrode and the drain. The first spacer is located on the first connecting layer.
Abstract:
A computer managing method includes the following steps. Firstly, a blade server system with M blade server units, which includes a number of server blades and a modular management blade (MMB), is provided, wherein the M MMBs are connected with each other via network paths and M is a natural number greater than 1. Then a master MMB among the M MMBs are selected in response to first user operation event. Next, the network parameter data of the master MMB are set in response to second user operation event. Then network topology of the master MMB and the rest of M−1 MMBs are obtained via the master MMB. After that, the rest of M−1 MMBs are driven for utilizing a network protocol service so that the M−1 MMBs are able to receive network parameter data from the master MMB and carry out parameter setting accordingly.
Abstract:
A switched beam smart antenna apparatus is disclosed including: a first, a second, a third, a fourth, a fifth, a sixth, a seventh, and an eighth beam adjusting elements; a first, a second, a third, and a fourth beam control modules; a first, a second, a third, and a fourth radiation strips positioned within an area surrounded by the first to eighth beam adjusting elements; and a radiation strip control module for selecting either the first and second radiation strips or the third and fourth radiation strips to transmit signals. When the first beam control module conducts the first and second beam adjusting elements, the third beam control module does not conduct the fifth and sixth beam adjusting elements. When the second beam control module conducts the third and fourth beam adjusting elements, the fourth beam control module does not conduct the seventh and eighth beam adjusting elements.