摘要:
A method for fabricating a semiconductor device includes forming a silicided gate utilizing a CMP stack. The CMP stack includes a first liner formed over the underlying semiconductor device and a first dielectric layer formed over the first liner layer. The first dielectric layer is formed to approximately the height of the gate. A second liner layer is formed over the first dielectric layer. Since the first dielectric layer is formed to approximately the height of the gate, the second liner over the moat regions is at approximately the height of the first liner over the gate. A CMP process is performed to expose the first liner over the top of the gate. Since the first dielectric layer is formed to the height of the gate, a portion of the second liner remains over the moat regions after the CMP process. Afterwards, the gate is exposed and a silicidation is performed to create a silicided gate.
摘要:
A method of forming a fully silicided semiconductor device with independent gate and source/drain doping and related device. At least some of the illustrative embodiments are methods comprising forming a gate stack over a substrate (the gate stack comprising a polysilicon layer and a blocking layer), and performing an ion implantation into an active region of the substrate adjacent to the gate stack (the blocking layer substantially blocks the ion implantation from the polysilicon layer).
摘要:
The present invention provides a method of fabricating a microelectronics device. In one aspect, the method comprises forming a capping layer 610 over gate structures 230 located over a microelectronics substrate 210 wherein the gate structures 230 include sidewall spacers 515 and have a doped region 525 located between them. A protective layer 710 is placed over the capping layer 610 and the doped region 525, and a portion of the protective layer 710 and capping layer 610 that are located over the gate structures are removed to expose a top surface of the gate structures 230. A remaining portion of the protective layer 710 and capping layer 610 remains over the doped region 525. With the top surface of the gate structures 230 exposed, metal is incorporated into the gate structures to form gate electrodes 230.
摘要:
The present invention facilitates semiconductor device operation and fabrication by providing a cap-annealing process that improves channel electron mobility without substantially degrading PMOS transistor devices. The process uses an oxide/nitride composite-cap to alter the active dopant profile across the channel regions. During an annealing process, dopants migrate out of the Si/SiO2 in a channel region thereby altering the dopant profile of the channel region. This altered profile generally improves channel mobility thereby improving transistor performance and permitting smaller density designs.
摘要:
In FLASH EPROM cells, source diffusion continuity between horizontal and vertical source lines is provided by an arsenic implant under the stack in vertical source lines.
摘要:
A method to implant NMOS polycrystalline silicon in embedded FLASH memory applications is described. In the method the polycrystalline silicon region (130) that will used to form the gate electrode of the NMOS transistor is doped simultaneously along with the source line in the FLASH memory array.
摘要:
A method of forming a semiconductor component having a conductive line (24) and a silicide region (140) that crosses a trench (72). The method involves forming nitride sidewalls (127) to protect the stack during the silicidation process.
摘要:
A method of forming a semiconductor component having a conductive line (24) that crosses a trench (72) may include forming the trench (72) in a semiconductor substrate (52). A dopant may be implanted at a first energy level into the semiconductor substrate (52) to form a first conductive region (92). The dopant may be implanted at a second energy level into the semiconductor substrate (52) to form a second conductive region (94). The first energy level may be greater than the second energy level. The first conductive region (92) and the second conductive region (94) may form the conductive line (24).
摘要:
A method of manufacturing a semiconductor device, comprising forming a metal silicide gate electrode on a semiconductor substrate surface. The method also comprises exposing the metal silicide gate electrode and the substrate surface to a cleaning process. The cleaning process includes a dry plasma etch using an anhydrous fluoride-containing feed gas and a thermal sublimation configured to leave the metal silicide gate electrode substantially unaltered. The method also comprises depositing a metal layer on source and drain regions of the substrate surface and annealing the metal layer and the source and drain regions of the substrate surface to form metal silicide source and drain contacts.
摘要:
A method for making CMOS transistors that includes forming a NMOS transistor and a PMOS transistor having an undoped polysilicon gate electrode and a hardmask. The method also includes forming a layer of insulating material and then removing the hardmasks and a portion of the layer of insulating material. A layer of silicidation metal is formed and a first silicide anneal changes the undoped polysilicon gate electrodes into partially silicided gate electrodes. Dopants of a first type and a second type are implanted into the partially silicided gate electrode of the PMOS and NMOS transistors and a second silicide anneal is performed to change the doped partially silicided gate electrodes into fully silicided gate electrodes.