Abstract:
A fire suppression system for producing an inert gas mixture having a minimal amount of carbon monoxide, particulates, or smoke. The inert gas mixture may be generated by combusting a gas generant. The gas generant may be a composition that includes hexa(ammine)-cobalt(III)-nitrate. The fire suppression system also includes a heat management system to reduce a temperature of the inert gas mixture. In one embodiment, the system includes multiple gas generators and is configured to ignite the respective gas generant of each gas generator in a predetermined, time based sequential order. For example, the gas generant of each gas generator may be ignited in a sequential order at specified time intervals. Methods of extinguishing fires are also disclosed.
Abstract:
An ionic liquid is disclosed A precursor composition that comprises at least one ionic liquid and at least one energetic material is also disclosed, as is a method of synthesizing an ionic liquid and a method of desensitizing an explosive composition.
Abstract:
A deployable truss is formed from a plurality of column members connected at their ends where at least some of the column members are formed from column assemblies, each including a plurality of strut members that are at least connected to each other at a first and second end of the column assembly. For added rigidity, strut members of a column assembly may be connected to each other between the first and second ends using, for example, a rigidizable resin, a fixed spacer, or a deployable spacer. Connecting strut members between the ends of the column assembly provides mutual bracing to the strut members and decreases the free buckling length of the individual strut members. Spacers are preferably configured to radially space the strut members away from the longitudinal centerline of the column assembly to increase its moment of inertia, and hence its buckling strength.
Abstract:
Electronic time delay apparatuses and methods of use are disclosed. An explosive or propellant system, which may be configured as a well perforating system includes an electronic time delay assembly comprising an input subassembly, an electronic time delay circuit, and an output subassembly. The input subassembly is activated by an external stimulus, wherein an element is displaced to activate an electronic time delay circuit. The electronic time delay circuit comprises a time delay device coupled with a voltage firing circuit. The electronic time delay circuit counts a time delay, and, upon completion, raises a voltage until a threshold firing voltage is exceeded. Upon exceeding the threshold firing voltage, a voltage trigger switch will break down to transfer energy to an electric initiator to initiate an explosive booster within the output subassembly. The explosive booster provides a detonation output to initiate the next element explosive or propellant element, such as an array of shaped charges in the well perforating system.
Abstract:
A multiple-stage solid rocket motor is operated in a manner designed to control its mass discharge profile. This is accomplished by providing means for igniting one stage and then igniting a subsequent stage while the first continues to burn.
Abstract:
An energy capture circuit for capturing energy in response to an input pulse. The circuit is constructed and arranged to transfer input energy in time divided portions among subcircuits. This includes a storage means, a clock means, at least two subcircuits, and at least one transfer circuit. Each subcircuit includes a first inductive means in operative communication with the input source, a rectifying means for producing a positive current in operative communication with the first inductive means, a capacitive means in operative communication with the rectifying means, and a switch means in operative communication with the capacitive means. At least one transfer circuit is in operative communication with each of the switch means of the at least two subcircuits. The output of the clock means is in operative communication with both a first switch means and an inverter means, the inverter means having an output in operative communication with a second switch means.
Abstract:
An electromagnetic pumped alkali metal vapor cell system is provided. The system comprises a vapor cell and windings. The vapor cell contains alkali metal and a buffer. The windings are positioned around the vapor cell and are configured to create an electromagnet field in the vapor cell when an AC signal is applied to the windings. The electromagnetic field pumps unexcited alkali vapor into unionized D1 and D2 states.
Abstract:
Projectiles containing a fluorophore composition comprising a fluorophore compound and an activator composition comprising an activator compound for marking targets are disclosed. Some embodiments include a nose structure with a cavity radially segmented into a plurality of radially isolated compartments by at least one laterally and radially extending internal wall. Additional embodiments include a fore compartment and an aft compartment sealed by a septum. Yet additional embodiments include at least one pressurized cavity and may further include a plunger positioned and configured to pierce each pressurized cavity. Methods of manufacturing target marking projectiles and methods of marking targets are also disclosed.
Abstract:
A portable laser source includes a flash lamp assembly defining a hollow central channel, an elongate laser rod extending within the hollow channel for receiving a flash of light emitted by the surrounding flash lamp assembly, and a hermetically-sealed enclosure housing both the flash lamp assembly and the laser rod and including at least one optical transmission window for transmitting a laser beam emitted by the laser rod. Preferably, the flash lamp assembly is hermetically-sealed from the laser rod within the enclosure to maintain physical and electrical isolation of the laser rod from combustible and electrically conductive components of the flash lamp assembly. The combustible component of the flash lamp assembly can include Zr wool and an accelerant, or like materials for emitting a flash of light. The laser source can include a second window used to test the condition of the laser rod via application of an external test light to activate the laser rod within the sealed enclosure.
Abstract:
A method of forming a composite elongated member is provided. The method includes forming a preform having at least one of a groove and a ridge. The at least one of a groove and a ridge extends a length of the preform. The preform is then shaped to create the elongated member having a desired cross-sectional shape with at least one curve formed along at least one of the at least one groove and ridge.