摘要:
A diffractive coupler coupling light between an opto-electronic element and a waveguide minimizes variation in coupling over an offset range, while providing good coupling efficiency. The offset range may be along the optical axis and/or radial. The diffractive coupler has a long depth of field and no best focus.
摘要:
A spectrometer for use with a desired wavelength range includes an array of filters. Each filter outputs at least two non-contiguous wavelength peaks within the desired wavelength range. The array of filters is spectrally diverse over the desired wavelength range, and each filter in the array of filters outputs a spectrum of a first resolution. An array of detectors has a detector for receiving an output of a corresponding filter. A processor receives signals from each detector, and outputs a reconstructed spectrum having a second resolution, the second resolution being higher than any of the first resolution of each filter.
摘要:
An imaging system includes an array of lenses, a plurality of sensor pixels for each lens, the sensor pixels being on an image plane of the imaging system, and a corresponding plurality of focal plane coding elements. A focal plane coding element for each sensor pixel has multiple sub-pixel resolution elements. The focal plane coding element being between the lens and each sensor pixel, wherein sub-pixel resolution elements over the plurality of focal plane coding elements represent a selected transform matrix having a non-zero determinant. The output of the plurality of sensor pixels being an image multiplied by this matrix
摘要:
An integrated optical apparatus includes an optically transparent substrate with a light source and a detector mounted adjacent thereto. The substrate includes an optical element in a transmit path from the light source to a remote target. The optical element splits the light into more than one beam. A detector receives beams reflected by the target. All optical elements needed to create the more then one beam, direct the more than one beam onto the target and direct the more than one beam from the target to the detector are on the substrate and/or any structure bonded to the substrate. Preferably, the optical element provides sufficient separation between the more than one beam such that each beam is delivered to a unique respective light detecting element of the detector. The return path from the remote target to the detector may include an optical element for each beam or no optical elements. An additional substrate may be included and bonded to the substrate. The active elements may be bonded to a bottom surface of the substrate, either directly or via spacer blocks, or may be provided on a support substrate, which is then bonded, either directly or via spacer blocks, to the substrate.
摘要:
Integrated multiple optical elements may be formed by bonding substrates containing such optical elements together or by providing optical elements on either side of the wafer substrate. The wafer is subsequently diced to obtain the individual units themselves. The optical elements may be formed lithographically, directly, or using a lithographically generated master to emboss the elements. Alignment features facilitate the efficient production of such integrated multiple optical elements, as well as post creation processing thereof on the wafer level.
摘要:
An integrated optical apparatus includes an optically transparent substrate with a light source and a detector mounted adjacent thereto. The substrate includes an optical element in a transmit path from the light source to a remote target. The optical element splits the light into more than one beam. A detector receives beams reflected by the target. All optical elements needed to create the more then one beam, direct the more than one beam onto the target and direct the more than one beam from the target to the detector are on the substrate and/or any structure bonded to the substrate. Preferably, the optical element provides sufficient separation between the more than one beam such that each beam is delivered to a unique respective light detecting element of the detector. The return path from the remote target to the detector may include an optical element for each beam or no optical elements. An additional substrate may be included and bonded to the substrate. The active elements may be bonded to a bottom surface of the substrate, either directly or via spacer blocks, or may be provided on a support substrate, which is then bonded, either directly or via spacer blocks, to the substrate.
摘要:
A method of fabricating a diffractive optical element includes the steps of: etching a negative of a desired multi-level diffraction pattern onto a molding surface of a quartz master element using photolithography, assembling the master element as a portion of a mold, and injecting a plastic molding composition into the mold and against the molding surface of the master element to injection mold a diffractive optical element, whereby the optical element has the desired diffraction pattern on its surface. The diffraction pattern is preferably formed on the quartz master using VLSI photolithography.
摘要:
A positioning system for a miniature electronic device. The positioning system has a first portion including a damper and a second portion connected to the first portion. The second portion positions a payload of the miniature electronic device. The miniature electronic device may be a miniature camera, or other device.
摘要:
An optical element may include a first diffractive structure having a radially symmetric amplitude function and a second diffractive structure having a phase function. The second diffractive structure may serve as a vortex lens. A system employing the optical element may include a light source and/or a detector.
摘要:
A sub-wavelength anti-reflective diffractive structure is incorporated with a base diffractive structure having a small period to form a high efficiency diffractive structure. In the high efficiency diffractive structure, the anti-reflective structure and/or the base diffractive structure are altered from their ideal solo structure to provide both the desired performance and minimize reflections.