Abstract:
A circuit includes a current controller oscillator generating a CCO output signal at a CCO output, a charge pump boosting a supply voltage based on the CCO output signal and producing a charge pump output voltage at an output, and a current sensing circuit sensing load current at the output and generating a feedback signal having a magnitude that varies with the sensed load current if a magnitude of the sensed load current is between lower and upper load current thresholds. A frequency of the CCO output signal is constant at a lower frequency threshold where the sensed load current is below the lower load current threshold, asymptomically rises to an upper frequency threshold where the sensed load current is above the upper load current threshold, and is proportional to the feedback signal where the sensed load current is between the lower and upper load current thresholds.
Abstract:
A charge pump circuit has load driven clock frequency management. The charge pump circuit includes a CCO generating a CCO output signal that has a frequency generally proportional to a feedback current, and a charge pump operated by the CCO output signal and boosting a supply voltage to produce a charge pump output voltage at an output coupled to a load. A current sensing circuit senses a load current drawn by the load and generates the feedback current as having a magnitude that varies as a function of the sensed load current if a magnitude of the load current is between a lower load current threshold and an upper load current threshold. The magnitude of the feedback current does not vary with the sensed load current if the magnitude of the sensed load current is not between the lower load current threshold and the upper load current threshold.
Abstract:
An antenna includes two planar coils that are mechanically disposed face to face and electrically connected in series. The antenna is mounted to a disposable consumer product (for example, a cartridge for use with an electronic cigarette). The antenna is configured to support near field communications with a reader circuit for purposes of authenticating use of the disposable consumer product.
Abstract:
The present disclosure is directed to a plurality of waffle gate parallel transistors having a shared gate on a surface of a semiconductor substrate. The shared gate has connected lines that form a plurality of frames, lines of each of the frames being over the perimeter of a respective source or drain region. The shared gate includes frames of a first size and shape and frames of a second size and shape, such as squares, rectangles and octagons. The frames having the first size and shape are each over a respective source region and the frames having the second size and shape are each over a respective drain region. Each of the frames having a first size and shape share at least one side with one of the frames having the second size and shape.
Abstract:
Several first digital streams of first digital samples at a first sampling frequency are processed to issue corresponding stream that are converted into second digital streams sampled at a second sampling frequency lower than said first sampling frequency. At least one delay to be applied to at least one first digital stream to satisfy a condition on the second digital streams is determined and applied to at least one first digital stream before converting. The converting operation performed is decimation filtering of the first digital streams. The application of the at least one delay to at least one first steam involves skipping a number of first digital samples in the at least one first digital stream. The number skipped depends on the value of the at least one delay. Samples that are skipped are not delivered for decimation filtering.
Abstract:
A method includes: writing first data in a first partition of a first memory module and second data in a first partition of a second memory module, and selectively operating the first and second memory modules in a first operating mode and a second operating mode. The first operating mode includes writing parity bits for the first data in a second partition of the second memory module and parity bits for the second data in a second partition of the first memory module. The second operating mode includes writing further data instead of parity bits in the second partition of one or both the first memory module and the second memory module.
Abstract:
A low-dropout linear regulator includes an error amplifier which includes a cascaded arrangement of a differential amplifier and a gain stage. The gain stage includes a transistor driven by the differential amplifier to produce at a drive signal for an output stage of the regulator. The transistor is interposed over its source-drain line between a first resistive load included in a RC network creating a zero in the open loop gain of the regulator, and a second resistive load to produce a drive signal for the output stage of the regulator. The second resistive load is a non-linear compensation element to render current consumption linearly proportional to the load current to the regulator. The first resistive load is a non-linear element causing the frequency of said zero created by the RC network to decrease as the load current of the regulator decreases.
Abstract:
A microelectronic device includes a first circuit and a second circuit, coupled to the first circuit for selectively preventing operation of the first circuit when a device temperature is higher than a temperature threshold. The second circuit is provided with a temperature responsive element, thermally coupled to the first circuit for providing a shutdown signal correlated to the device temperature. The temperature responsive element includes a reverse-biased junction element and the shutdown signal is correlated to a reverse leakage current of the reverse-biased junction element.
Abstract:
An amplifier with an output protection having an input stage defining a feedback node, an output stage connected to the feedback node and defining an output node supplying an output voltage, and a feedback stage connected between the output and the feedback nodes. A mirror stage is connected to the feedback node and has the same structure as the output stage, the mirror stage defining a reference node connected to the feedback stage for generating a reference voltage to be compared to the output voltage by the feedback stage. The feedback stage generates a current limitation signal fed to the feedback node when a difference between the output and the reference voltages is higher than a threshold.
Abstract:
A synchronous rectifier, including an energy storage element having a terminal; a power supply input, connected to the terminal of the storage element in a first time interval; a reference line connected to the terminal of the storage element in a second time interval; and a zero comparator, coupled to the terminal of the storage element to detect a current flowing in the energy storage element and disconnect the terminal of the storage element from the reference line upon detecting a zero current, the zero comparator having an offset and a propagation time; the zero comparator further having an offset control input and an output. An offset regulating loop is coupled between the output of the zero comparator and the offset control input and regulates the offset of the zero comparator to compensate the propagation time.