Abstract:
An electrosurgical instrument includes an elongated housing having proximal and distal ends. The proximal end is configured to couple to a source of electrosurgical energy via first and second channels extending along a length of the housing to the distal end thereof. The distal end includes a reflector having a dielectric load operably coupled thereto and configured to receive at least a portion of the first conductor therein. In a first mode of operation, electrosurgical energy is transmitted to the first channel and reflected from the reflector to electrosurgically treat tissue. The reflector is configured to receive at least a portion of the second channel therein. In a second mode of operation, electrosurgical energy is transmitted to the second channel to dissect tissue.
Abstract:
Devices and methods for treating tissue with microwave energy used in applications such as destroying a soft tissue by microwave ablation and/or creating point, line, area or volumetric lesions. Various embodiments of flexible, low-profile devices are also disclosed where such device can be inserted non-invasively or minimally invasively near or into the target tissue such as cardiac tissue. The devices disclosed herein comprise antennas wherein the field profile generated by an antenna is tailored and optimized for a particular clinical application. The antennas use unique properties of microwaves such as interaction of a microwave field with one or more conductive or non-conductive shaping elements to shape or redistribute the microwave field.
Abstract:
An ablation device which transmits radio frequency (RF) energy for the ablation of biological tissues has elongate inner and outer coaxial conductors extending from a proximal portion to a distal portion. An RF antenna is disposed at the distal portion of the device and transmits RF energy for ablation of a tissue region to be treated. Reflection of energy from the tissue or the ablation point is reduced by providing multiple layers of dielectric media about the antenna, or by providing a gradual transition point from the conductors to the antenna tip, by means of a longitudinally stepped dielectric layer transformer.
Abstract:
Various high-strength microwave antenna assemblies are described herein. The microwave antenna has a radiating portion connected by a feedline to a power generating source, e.g., a generator. The antenna is a dipole antenna with the distal end of the radiating portion being tapered and terminating at a tip to allow for direct insertion into tissue. Antenna rigidity comes from placing distal and proximal radiating portions in a pre-stressed state, assembling them via threaded or overlapping joints, or fixedly attaching an inner conductor to the distal portion. The inner conductor is affixed to the distal portion by, e.g., welding, brazing, soldering, or by adhesives. A junction member made from a hard dielectric material, e.g., ceramic, can be placed between the two portions and can have uniform or non-uniform shapes to accommodate varying antenna designs. Electrical chokes may also be used to contain returning currents to the distal end of the antenna.
Abstract:
An electrosurgical generator for supplying electrosurgical energy to tissue is disclosed. The generator includes sensor circuitry configured to measure at least one tissue or energy parameter and a controller configured to generate a plot of the at least one tissue or energy parameter including a plurality of tissue parameter values, wherein the controller is further configured to normalize the plot of the at least one tissue or energy parameter with respect to treatment volume.
Abstract:
A microwave ablation probe for providing microwave energy to tissue is disclosed. The probe includes a feedline having an inner conductor, a secondary inner conductor, an insulating spacer, and an outer conductor. The inner conductor is slidably disposed within the secondary inner conductor. The feedline also includes a radiating portion having an extruded portion of the inner conductor centrally disposed therein, wherein longitudinal movement of the inner conductor relative to the feedline tunes the radiating portion.
Abstract:
A surgical spatula (10, 34) has a flat paddle (38, 62) and a handle extending away from a first end of the flat paddle (38, 62). The handle has a coaxial power feed (64, 130) which is connectable to receive energy from a microwave power source. The paddle (38, 62) contains a microwave conveying structure connected to the coaxial power feed (64, 130). The microwave conveying structure is enclosed at a front end of the paddle (38, 62) opposite to the first end so that microwave radiation is blocked from being emitted from the front end. The microwave conveying structure is open along a side of the paddle (38, 62) which extends away from the first end to permit a microwave radiation field to be emitted from that side.
Abstract:
An RF ablation system has a hollow conductive coaxial cable comprising inner and outer coaxial tubular conductors, and an ablating member mounted at the distal end portion of the cable for delivery of radio frequency energy including microwaves to the target body tissue. The inner conductor has a central lumen and extends at least up to the ablating member. At least one electromagnetic tracking sensor coil with a magnetic core is located in the central lumen at the distal end portion of the cable, close to the distal tip of the cable, and connected to a signal processing unit. An electromagnetic field generator positioned in the vicinity of a patient undergoing treatment generates an electromagnetic field which induces a voltage in the sensor coil. The signal processing unit uses the induced voltage to calculate the position and orientation of the distal end portion or tip of the catheter in a patient's body.
Abstract:
A microwave ablation system includes an antenna assembly configured to deliver microwave energy from a power source to tissue and a coolant source operably coupled to the power source and configured to selectively provide fluid to the antenna assembly via a fluid path. The system also includes a controller operably coupled to the power source and a sensor operably coupled to the fluid path and the controller. The sensor is configured to detect fluid flow through the fluid path and the controller is configured to control the energy source based on the detected fluid flow.
Abstract:
An electromagnetic surgical ablation probe having a conical hood reflector and method of manufacture thereof is disclosed. The disclosed probe includes a shaft assembly that has a coaxial feedline core having an inner conductor and an outer conductor separated by an insulating layer. A tubular catheter is disposed coaxially around the feedline and is configured to deliver coolant, such as saline or deionized water, to a coolant chamber at a distal end formed within the conical reflector. A radiating section disposed within the conical reflector may have a conical, cylindrical, or other suitable shape. A membrane disposed across a distal opening of the conical reflector seals coolant within the coolant chamber, and may conform to tissue contours during use. A resilient aperture may be included at the periphery of the conical hood. The shaft assembly may include an angled section, an adjustable section, and, additionally or alternatively, a malleable section.