Abstract:
An endoluminal prosthesis for deployment in a body which has a first tubular structure for stabilising the prosthesis, the first tubular structure being substantially concentric about a first axis and movable between a compact and an expanded state. The prosthesis also has a second tubular structure for supporting an artificial heart valve, the second tubular structure being substantially concentric about a second axis and moveable between a compact and an expanded state. The first axis and the second axis extend at different angles when the first and second structures are in the compact and/or expanded state. A third structure which is shape and/or length adjustable is positioned between the first and second structures.
Abstract:
A delivery system for delivering and deploying stents with proximal and distal apices includes a guidewire catheter, a nose cone assembly, a proximal capture portion and a stent graft with proximal and distal stents. The nose cone assembly is at the distal end of the guidewire catheter and includes a nose cone and a distal capture portion. The proximal capture portion is proximal to the distal capture portion of the nose cone assembly. The proximal stent is releasably secured to the distal capture portion and the distal stent is releasably secured to the proximal capture portion. The stent graft can be deployed by releasing the proximal stent and the distal stent from proximal and distal capture portions of the delivery system.
Abstract:
There is disclosed a method of treating hypoxia in tissue of a blood vessel, the method comprising placing a stent in the vessel, the stent having a centre line which curves in three dimensions to promote the supply of oxygen from the blood flowing in the lumen of the stented vessel to the vessel wall. There is disclosed a method of treating a subject with diabetic atherosclerosis, the method comprising placing a stent in a blood vessel of the subject, the stent having a centre line which curves in three dimensions to promote the supply of oxygen from the blood flowing in the lumen of the stented vessel to the vessel wall.
Abstract:
A deployment apparatus and method for deploying one or more stents to a bifurcated vessel is provided. The invention is particularly suited for T-type bifurcated vessels where a side branch extends from a main branch. The deployment apparatus has a primary inflatable portion for engagement within the main branch and a secondary inflatable portion for engagement within the side branch. A main stent is arranged on the primary inflatable portion and radially expanded within the main branch while the secondary inflatable portion maintains registration with the side branch. A side branch stent is then arranged on the secondary inflatable portion and expanded within the side branch while the primary inflatable portion maintains registration with the expanded main stent. A bifurcated stent system suitable for bifurcated lesions is also provided comprising a side branch stent with a shaped end designed to engage a similarly shaped side opening in a main stent.
Abstract:
An intraluminal stent made of a zig-zag or sinusoidal member defining a successive series of struts connected by apex sections and formed into a series of axially displaced hoop members wherein at least one of the hoop members has at least 5 one strut connected to a strut of an adjacent hoop. The connected struts may be connected by spot welding, continuous welding, or suturing, for example, or by a bridging member connected to each strut, and may be spaced along the length of the stent in a pattern to form a connective spine. The number of zigs of the zig-zag member in each hoop member may be varied, as can the zig length. A plurality of 10 connective spines may also be included.
Abstract:
An endovascular stent system (10) includes first and second generally tubular stents members (20, 22), which are shaped so as to define first and second interface sections (40, 42), respectively, which are securely coupleable to each other. The first interface section (40) is shaped so as to define an opening (44). The second interface section (42) is shaped so as to define a neck portion (50). When the first and second stent members (20, 22) are coupled together, the neck portion (50) is at least in part defined by: (a) first ones (72) of structural elements (70), positioned at respective first circumferential locations, which are configured to apply, to the opening (44), distally- and radially-outwardly-directed forces, without applying any proximally-directed forces, and (b) separate from the first structural elements (72), second ones (74) of the structural elements (70), positioned at respective second circumferential locations different from the first circumferential locations, which are configured to apply, to the opening (44), a proximally- and radially-outwardly-directed forces, without applying any distally-directed forces.
Abstract:
A bypass provided by a bypass conduit disposed in a vessel which is collateral to an occluded vessel. The bypass conduit comprises a helical wire body having a plurality of connectors connecting adjacent turns of the helical body.
Abstract:
The invention concerns a minimally invasive valve repair system (2), in particular a mitral valve repair system (2) or a tricuspid valve repair system. The system comprises a valve component (3), in particular a mitral valve component (3) or a tricuspid valve component, holding or adapted to hold a valve (4), in particular a mitral valve (4) or a tricuspid valve, respectively. The system (2) comprises a linker-component (6) by means of witch the valve component (3) is linked or linkable to an anchor support (5), in particular an in particular an aortic valve or aortic anchor support (5) or a pulmonic valve or pulmonary artery anchor support, respectively.
Abstract:
A method of implanting a prosthesis in a patient at a treatment site within a blood vessel includes advancing an outer catheter of a prosthesis delivery system in the patient distal to the treatment site, the outer catheter defining an inside diameter and advancing an inner sheath, having greater flexibility than the outer catheter and an outside diameter that is greater than the inside diameter of the outer catheter, and a guidewire lumen of the delivery system from the outer catheter to the treatment site along a guidewire while the outer catheter remains stationary relative to the patient, whereby advancing the inner sheath delivers the prosthesis to the treatment site. The inner sheath is retracted to deploy the prosthesis from within the inner sheath and at the treatment site after which the delivery system from the patient.
Abstract:
A device for treatment of mitral annulus dilation is disclosed, wherein the device comprises two states. In a first of these states the device is insertable into the coronary sinus and has a shape of the coronary sinus. When positioned in the coronary sinus, the device is transferable to the second state assuming a reduced radius of curvature, whereby the radius of curvature of the coronary sinus and the radius of curvature as well as the circumference of the mitral annulus is reduced.