Abstract:
A supersonic injection nozzle comprises: nozzle body part provided with inflow chamber in the inner portion; nozzle sleeve equipped in the nozzle body part and injection liquid being supplied in the inner portion; ultrasonic oscillator installed at the inflow chamber and vibrating the nozzle sleeve with ultrasonic waves and making the injected liquid passing through the inner portion of the nozzle sleeve atomized particles; compression air guide part installed in the front side of the nozzle body part and of which the front part of the nozzle sleeve is exposed from the front end and which has at least two liquid ejection holes provided at symmetrical position, wherein the ejection holes are connected to the inflow chamber of the nozzle body part and inclinedly supply the compressed air to the section of the liquid ejection holes provided at the front end of the nozzle sleeve.
Abstract:
A part processing apparatus includes a plurality of part mounting devices, each of which is rotatable. Parts are mounted on the plurality of part mounting devices, and the parts are rotated on the devices during a part processing operation. A rotational input shaft is coupled to all of the plurality of part mounting devices so that all of the part mounting devices rotate together. A part processing robot may be movable between a plurality of positions located adjacent each of the part mounting devices. Alternatively, the part mounting devices may be movable to a plurality of different positions so that each of the part mounting devices can be located adjacent to the part processing robot.
Abstract:
A device is disclosed that uses a flow-control methodology to control sprays at very high precision and frequency. The device is based on an enhanced Coanda effect. The control flow is selectively applied to the region in which we desire the jet to vector and control the profile (width) of the jet. The control flow is introduced through multiple control flow ports surrounding the primary nozzle and adjacent to the Coanda surface. By selectively opening and closing different control flow ports the motion and profile of the jet can be controlled.
Abstract:
A part processing apparatus includes a plurality of part mounting devices, each of which is rotatable. Parts are mounted on the plurality of part mounting devices, and the parts are rotated on the devices during a part processing operation. A rotational input shaft is coupled to all of the plurality of part mounting devices so that all of the part mounting devices rotate together. A part processing robot may be movable between a plurality of positions located adjacent each of the part mounting devices. Alternatively, the part mounting devices may be movable to a plurality of different positions so that each of the part mounting devices can be located adjacent to the part processing robot.
Abstract:
Apparatus is described for rapidly coating a large area, or for rapidly producing a powder. In one embodiment, a liquid having a coating chemical is pumped from a liquid reservoir to a distribution manifold. From the distribution manifold, the liquid is carried under pressure to a geometric array, e.g., linear, of atomization nozzles. Flow equalization means are provided for equalizing the flow of the liquid delivered to each nozzle, and, preferably, means are provided for equalizing the temperature of the liquid delivered to each nozzle. The liquid, upon exiting the nozzles with the attendant pressure drop atomizes. The atomized liquid coats a substrate either in non-reacted or reacted form, or forms a powder. In a preferred embodiment, a solution of precursor chemical is reacted in a geometric array of flames produced at the nozzles, and a coating material produced in the flame coats the substrate, or a powder is formed. In another embodiment, vaporized precursor and vaporized are fed to a burner chamber having a linear exit slit. The vapor exiting the slit is burned, and material produced in a flame reaction are deposited on a substrate, or the powder formed is collected.