Abstract:
The vehicle control apparatus includes a control section computing a command value indicative of acceleration/deceleration behavior to be taken by a vehicle, and an acceleration/deceleration controller controlling acceleration and deceleration of the vehicle by use of an acceleration/deceleration actuator on the basis of the command value. The acceleration/deceleration controller transmits driver-operated acceleration data indicative of an acceleration demand caused by operation by a driver of the vehicle, and the control section computing the command value at least according to the driver-operated acceleration data.
Abstract:
A drive control system for a vehicle includes a braking force control mechanism that controls braking forces on the wheels of the vehicle according to a braking operation, a steering characteristic control mechanism that varies the steering characteristic of the vehicle, a determination portion that determines whether an emergency steering operation is likely to de performed when hard braking is being applied, and a main control portion that controls the steering characteristic control mechanism so as to vary the steering characteristic of the vehicle to increase oversteering component of the vehicle if the determination portion determines that an emergency steering operation is likely to be performed.
Abstract:
In a method for determining at least one, preferably however several driver-independent interventions in a vehicle system, a risk calculator is used, whose input is supplied with predetermined vehicle data, ambience data, current vehicle and driver data, occupant data or data of persons outside the vehicle, or similar data. The risk calculator issues an evaluation of the risk situation of the vehicle and its occupants or the persons outside the vehicle based on said data and, in accordance with the evaluation and optional additional criteria or weightings, outputs driving signals controlling actuators that modify or trigger the driving behavior of the vehicle and/or the occupant protection system and/or protection means for other traffic participants (pedestrians, cyclists, etc.) in such a way that maximum protection is obtained for the persons and the vehicle according to a priority control.
Abstract:
A braking control device for a vehicle executes braking force distribution (BFD) biased to front wheel, taking into account auxiliary braking control such as Braking assist control to be executed when an abrupt or full braking action is done by the driver. In BFD control, braking force on rear wheels is held at a holding braking force and braking force on the front wheels is incremented beyond braking force requested by a braking action of a driver. After the starting of BFD control, further increase in the braking action is reflected in the front wheel braking force. When the auxiliary braking control is executed, the holding braking force on the rear wheels and the increment of the braking force on the front wheels are determined based upon a demand of the auxiliary braking action as well as the braking action amount by the driver.
Abstract:
A brake system for a vehicle is equipped with a brake servo assistance unit for the automatic generation of brake force and with at least one sensor for the generation of a measuring signal. This signal represents an activity on the part of the driver and can be fed to a brake pressure control unit. An activation control signal for the actuation of the brake servo assistance unit can be generated should the measuring signal lie within an activation value range. In order to improve operating reliability, at least two sensors are provided for measurement of an activity on the part of the driver, and an activation control signal can be generated should the measuring signals from the sensors each exceed a reference value.
Abstract:
The invention relates to a method for controlling or regulating the build-up of brake pressure when full braking at a high friction coefficient, which is provided for an independent brake system with anti-lock control and wherein the rotational behavior of the individual vehicle wheels and the instantaneous friction coefficient are determined and evaluated for the control and/or regulation of the brake pressure, said method comprising the following steps: detecting a full braking or panic stop situation, quick brake pressure build-up at the beginning of the braking operation, comparing the wheel slip and the wheel deceleration or the filtered wheel deceleration with predetermined limit values, and reduction of the brake pressure build-up gradient or transition to a reduced brake pressure build-up gradient directly before reaching the locking pressure level, that means, when the limit values predefined for the wheel slip and the wheel deceleration are exceeded. These measures achieve a better utilization of the vertical wheel force that is increased by the dynamic axle-load transfer.
Abstract:
Methods are disclosed for determining, in dependence on the driving situation, the sensitivity of the triggering of an automatic braking operation for a motor vehicle in which an automatic braking operation is triggered during a braking maneuver when the speed of actuation of the brake pedal exceeds a predetermined threshold value. The automatic braking operation consists of the production of a brake pressure higher than that corresponding to the position of the brake pedal. The sensitivity of the triggering of the automatic braking operation is adapted to the driving situation existing at the moment of the braking operation in question, and permits better differentiation between emergency braking and target braking. Variation of the sensitivity of the triggering in dependence on the nature, or the occurrence in terms of time, of the actuation of the pedal by the driver is provided by taking into account only the braking manoeuvre in question and/or the pedal actuations preceding this braking maneuver.
Abstract:
The brake system includes a pedal unit through which operations of the brake pedal of the motor vehicle are detected with one or more sensors and desired values of the brake application force are generated according the driver requirement. The system also includes electrically actuated brake actuators at the wheels of the motor vehicle. An electronic central controller evaluates the sensor signals and generates control signals for additional brake functions. Data blocks are exchanged in a predefined cyclically repeating time pattern over a data bus connecting the pedal unit, the brake actuators, and the central controller. Over an additional signal line connecting together the pedal unit, the brake actuators and the central controller, the desired value for the brake application force is transmitted from the pedal unit to the brake actuators and the central controller and data are exchanged concerning the status of the connected devices.
Abstract:
When a brake pedal is operated by the vehicle driver, and detection signals from hydraulic pressure sensors and a brake switch, for detecting pressure of the brake pedal, are supplied to an ECU, the ECU performs a determination according to the detection signals as to whether or not the hydraulic pressure PM is a maximum pressure gradient d(PM)/dtmax. When the determination result of the braking condition is an emergency braking condition, an intake valve is opened. Thereafter, atmosphere is forcibly supplied to atmospheric chambers of a booster, to assist the braking force.
Abstract:
A method of shortening the braking distance in critical driving situations uses the criterion of exceeding of a first threshold value by the actuating speed of the brake pedal (v.sub.BP) by the vehicle driver for initiating an automatic braking operation. A brake pressure (p.sub.B,max) which corresponds to the value of the brake pressure with optimum deceleration of the vehicle is built up automatically immediately after initiation of the automatic braking operation.