摘要:
A driving assistance system for a work vehicle may comprise a service brake configured to decelerate the work vehicle upon actuation of the service brake, a parking brake and a transmission including a clutch. A controller may be configured to disengage the clutch when the work vehicle speed is less than a speed threshold and when the service brake is actuated, whereby the work vehicle is brought to a stop.
摘要:
A transmission controller implements a neutral idle feature to reduce fuel consumption. A brake controller implements a Hill Start Assist feature to prevent roll-back when a vehicle is launching on an uphill grade. The transmission controller and the brake controller communicate to implement these features in a synergistic manner. Within certain road grade ranges, the transmission requests Hill Start Assist before activating neutral idle and does not activate neutral idle until it receives confirmation that Hill Start Assist is active. The transmission controller provides a powertrain torque estimate to the brake controller which the brake controller uses to determine when to release the brakes during an assisted start.
摘要:
A multi-functional electric module (eModule) is provided for a vehicle having a chassis, a master controller, and a drive wheel having a propulsion-braking module. The eModule includes a steering control assembly, mounting bracket, propulsion control assembly, brake controller, housing, and control arm. The steering control assembly includes a steering motor controlled by steering controllers in response to control signals from the master controller. A mounting feature of the bracket connects to the chassis. The propulsion control assembly and brake controller are in communication with the propulsion-braking module. The control arm connects to the lower portion and contains elements of a suspension system, with the control arm being connectable to the drive wheel via a wheel input/output block. The controllers are responsive to the master controller to control a respective steering, propulsion, and braking function. The steering motor may have a dual-wound stator with windings controlled via the respective steering controllers.
摘要:
A modular robotic vehicle includes a chassis, driver input devices, an energy storage system (ESS), a power electronics module (PEM), modular electronic assemblies (eModules) connected to the ESS via the PEM, one or more master controllers, and various embedded controllers. Each eModule includes a drive wheel containing a propulsion-braking module, and a housing containing propulsion and braking control assemblies with respective embedded propulsion and brake controllers, and a mounting bracket covering a steering control assembly with embedded steering controllers. The master controller, which is in communication with each eModule and with the driver input devices, communicates with and independently controls each eModule, by-wire, via the embedded controllers to establish a desired operating mode. Modes may include a two-wheel, four-wheel, diamond, and omni-directional steering modes as well as a park mode. A bumper may enable docking with another vehicle, with shared control over the eModules of the vehicles.
摘要:
A modularly constructed electronic motor vehicle control system, includes wheel speed sensor inputs, at least one brake controller, and inertial sensors. The signals from the wheel speed sensors are fed into a chassis base module. The module evaluates the signals and feeds them to an electronic brake controller spatially separated from the chassis base module. The chassis base module and the brake controller are disposed in separate control device housings.
摘要:
An integrated stability control system using the signals from an integrated sensing system for an automotive vehicle includes a plurality of sensors sensing the dynamic conditions of the vehicle. The sensors include an IMU sensor cluster, a steering angle sensor, wheel speed sensors, any other sensors required by subsystem controls. The signals used in the integrated stability controls include the sensor signals; the roll and pitch attitudes of the vehicle body with respect to the average road surface; the road surface mu estimation; the desired sideslip angle and desired yaw rate from a four-wheel reference vehicle model; the actual vehicle body sideslip angle projected on the moving road plane; and the global attitudes. The demand yaw moment used to counteract the undesired vehicle lateral motions (under-steer or over-steer or excessive side sliding motion) are computed from the above-mentioned variables. The braking control is a slip control whose target slip ratios at selective wheels or wheel are directly generated from the request brake pressures computed from the demand yaw moment.
摘要:
A modularly constructed electronic motor vehicle control system, includes wheel speed sensor inputs, at least one brake controller, and inertial sensors. The signals from the wheel speed sensors are fed into a chassis base module. The module evaluates the signals and feeds them to an electronic brake controller spatially separated from the chassis base module. The chassis base module and the brake controller are disposed in separate control device housings.
摘要:
In lane keep control apparatus and method for an automotive vehicle, a deceleration controlled variable is calculated on the basis of a state of a tendency of a vehicular deviation from a traffic lane on which the vehicle is traveling and a braking force acted upon each of driven wheels of the vehicle is controlled on the basis of the calculated deceleration controlled variable.
摘要:
The device according to the invention relates to a device for evaluating and/or influencing a vehicle movement variable and/or the vehicle movement behavior. For this purpose, the device has the following means: operator control means (10) with which the driver can generate predefined values (VG) for influencing at least one vehicle movement variable. Evaluation means (42, 44, 46, 48) with which the behavior of a vehicle movement variable with respect to a predefined value is evaluated, and/or with which the vehicle movement behavior is evaluated with respect to a predefined vehicle movement behavior as a function of vehicle movement variables and/or of variables which represent the surroundings of the vehicle. These evaluation means (42, 44, 46, 48) can be operated in at least two different operating states, only an information item (OHAx) relating to the behavior of the vehicle movement variable and/or relating to the vehicle movement behavior being made available to the driver in a first operating state as a function of the result of the evaluation which is carried out, and output signals (AGSx) for influencing a vehicle movement variable and/or the vehicle movement behavior independently of the driver being determined in a second operating state as a function of the result of the evaluation which is carried out. In addition, the device has influencing means (40) by means of which the driver can switch over the evaluation means (42, 44, 46, 48) between the at least two operating states. There is also provision of processing means (12, 14, 16, 18, 20, 22) with which actuation signals (ASSx) for actuating actuators (26, 28, 30) which are arranged in the vehicle are generated on the basis of the predefined values (VG) which are generated by the driver and/or, if the evaluation means (42, 44, 46, 48) are operated in the second operating state, on the basis of the output signals (AGSx). The actuation of the actuator (26, 28, 30) influences the vehicle movement variable and/or the vehicle movement behavior.
摘要:
An electronic system for a vehicle includes first components for carrying out control tasks in response to operating sequences and second components that coordinate a cooperation of the components for carrying out control tasks. The first components carry out the control tasks by using operating functions and basis functions, wherein the system is constructed such that the basis functions are combined in a basis layer, and a system layer is superimposed on the basis functions, which includes at least two of the second components. At least one open interface of the system layer is provided for the operating functions, and the system layer links the basis functions to any and all operating functions, such that the operating functions can be interconnected and/or used in a modular fashion.