Abstract:
A glass substrate support system includes a first and second vacuum members extending lengthwise in a glass substrate feed direction along opposing edges of a flexible glass substrate. Each vacuum member has a vacuum body including a pressure chamber located therein and a support surface having a vacuum opening extending therethrough and in communication with the pressure chamber. A support rod assembly is provided that includes a plurality of support rods located between the first second vacuum members in the glass substrate feed direction. The support rod assembly has an out-of-plane configuration that supports the flexible glass substrate in a downward arc orientation.
Abstract:
A system for treating wood (30), comprising: —a treatment vessel (14) configured to receive at least one wood stack (4) for treatment, and —a stack holding system (2) for holding a wood stack (4), the stack holding system (2) comprising: —a frame (6), configured to support the wood stack (4); —a first element (8), connected to the frame (6) near an upper side of said frame (6), configured to exert a first, downward force on the wood stack (4); and —a second element (10), connected to the frame (6) near a lower side of said frame (6), configured to exert a second force on the wood stack (4) in a direction opposite said first force. The invention also comprises a method for treating wood, using a system for treating wood according to the invention.
Abstract:
The present disclosure relates to assembling, advancing, reorienting, and/or transferring stretched elastic parts during the assembly of absorbent articles. As described herein, a transfer assembly reorients a stretched elastic part from a first orientation, wherein the direction of stretch is generally parallel to the machine direction, to a second orientation, wherein the direction of stretch is generally perpendicular to the machine direction. The reoriented elastic part is then transferred to a carrier while maintaining the stretched condition of the elastic part. The orientation and/or configuration of vacuum apertures in a carrier surface relative to the direction of stretch of the elastic part and relative to the machine direction helps to prevent the elastic part from contracting, while at the same time helps to allow the elastic part to slide off the carrier surface without snagging and/or sticking to aperture perimeter edges.
Abstract:
The present disclosure is directed to a transfer assembly for transferring discrete articles from or to a moving carrier member. The transfer assembly comprises a frame defining a rotation axis. The frame comprises a track having a circumferential shape surrounding the rotation axis. The transfer assembly comprises transfer members movably engaged with the track, each having a transfer surface. The transfer assembly comprises a wheel engaged with the frame and configured to rotate about the rotation axis. The wheel is engaged with the transfer members. As the wheel rotates about the rotation axis, the transfer members circumnavigate about a path about the rotation axis in correspondence with the track. The shape of the track causes the transfer surfaces to move radially relative to the rotation axis while the transfer surfaces are maintained a substantially constant distance away from the moving carrier member at the point of discrete article transfer.
Abstract:
Disclosed are an apparatus and a method for quickly transferring plates, in particular glass plates, of different sizes, thicknesses and quality levels so as to place the plates one behind another on different stacking frames, said apparatus and method having the following features: a) the plate (5) that is to be transferred on conveyor rolls of a transport device (7) is gripped by a gripping device (4) and the rotatable gripping fingers (13) thereof that are provided with holding means (14), the gripping device (4) being suspended on support cables (2); b) the gripping device (4), together with the plate (5), is then conveyed to a selected stacking frame (6) by shortening and/or lengthening appropriate support cables (2) and is deposited on the stacking frame (6) by releasing the holding means (14); c) the gripping device (4) is conveyed to the next operating position thereof by shortening and/or lengthening specific support cables (2).
Abstract:
A device for stopping and/or aligning transport goods on a conveying device, in particular a roller conveyor, device has a main part and a stopping device that can be moved out of the main part into a conveying path of the conveying device in order to stop and/or align the transport goods that are transported along the conveying path. The stopping device comprises at least two separate stops that can be moved between a working position, which projects into the conveying plane, and a rest position, which is retracted with respect to the conveying plane, by means of a common actuator device.
Abstract:
Method and apparatus for transferring articles from a first carrier moving at a first speed to a carrier moving at a second speed. The apparatus may include a first transfer surface driven by a first motor and second transfer surface driven by a second motor. The first and second transfer surfaces receive and transfer different portions of an article at different speeds such that a desired amount of spacing can be provided between discrete articles in a process independent of the size of the article.
Abstract:
The present invention provides a method of suitably conveying a sheet-shaped member 32. The method of the present invention is performed in an equipment 20 including: a blower duct 22; a sheet feeding unit 28 for feeding the sheet-shaped member 32 to the blower duct 22; and an air stream unit 24 for generating an air stream in the blower duct 22, and the method comprises the steps of: forming a temporary deformity 32b in the sheet-shaped member 32; feeding the sheet-shaped member from the sheet feeding unit 28 to the blower duct 22; and conveying the sheet-shaped member by applying a wind pressure to the deformity 32b.
Abstract:
A stacking device includes a drive mechanism coupled to a movable band. The movable band is configured to move along an orbital path, and a twin roller with first and second portions engages the movable band and folds the movable band into at least two portions. In some cases, the drive mechanism can also include, or be attached to, two additional rollers that are inside the band and move along the orbital path. A stacking device may also include a roller set with first and second portions that press against a band. A mechanism may cause the band to orbit along a path such that it causes the band to receive a stackable item and move it to a predetermined location. At the predetermined location, the band releases the stackable item while continuing to orbit along the path, but while having zero total velocity.
Abstract:
The invention proposes a chain for a machine drive, transport of material in a machine or the like, and also a packaging machine comprising one such chain, this chain being better than known link chains at meeting requirements in respect of hygiene conditions during operation and cleaning. This is achieved according to the invention in that flexible chain links (4) are provided between rigid chain links (2), the flexible chain links (4) being fixed to the rigid chain links (2).