Abstract:
A liquid-liquid extraction process of ketones, alcohols, aldehydes, alkyl esters of carboxylic acids, carboxylic acids, ethers, amines and heterocyclic compounds, from their aqueous solutions, comprising the addition under stirring to said aqueous solutions of a fluorinated extracting liquid selected from A) hydrofluoropolyethers, B) hydrofluorocarbons, C) hydrofluoroethers, or mixtures thereof, with formation of an aqueous phase and of an organic phase; the separation of the organic phase from the aqueous phase; the fractional distillation of the organic phase to separate the polar organic substance from the extractant.
Abstract:
A process for reducing the level of perfluoroalkanoic acids, perfluoroalkanoic esters, and perfluoroalkyliodides in fluorinated alcohols comprising heating a fluorinated alcohol, or mixtures thereof, containing said acids, esters, or iodides to a temperature of at least 175° C. in the presence of water and a base additive is disclosed.
Abstract:
The invention provides methods for separating outer birch bark from inner birch bark. The invention also provides methods for isolating betulin; lupeol; betulinic acid; 9,10-epoxy-18-hydroxyoctadecanoic acid; 9,10,18-trihydroxyoctadecanoic acid; polyphenolic polymers and fatty acids from birch bark.
Abstract:
Disclosed herein are processes for the recovery of 1,3-propanediol from an aqueous feed stream. The present invention involves contacting an aqueous feed stream that comprises water, 1,3-propanediol, and at least one contaminant with at least one solvent extractant to form a mixture. The mixture is separated into a first phase and a second phase. The second phase comprises a majority of the water from the aqueous feed stream. The first phase comprises solvent extractant and at least some of the 1,3-propanediol that was present in the aqueous feed stream. The weight ratio in the first phase of 1,3-propanediol to any one contaminant present is greater than the weight ratio of 1,3-propanediol to the same contaminant in the aqueous feed stream prior to the aqueous feed stream being contacted with the solvent extractant. The first phase can be removed from the separated second phase in order to recover the 1,3-propanediol.
Abstract:
The present invention relates to a naturally obtained mixture of higher molecular weight primary aliphatic alcohols which contain 20 to 34 carbon atoms. This invention also relates to the process for obtaining the alcohol mixture by extraction and purification with organic solvents from a natural product, such as beeswax with and without saponification of the natural product. The alcohol mixture obtained from beeswax has enhanced purity and contains a mixture of alcohols having 20, 22, 24, 26, 27, 28, 30, 32 and 34 carbon atoms. The alcohol mixture is useful in pharmaceutical compositions, foodstuffs and dietary supplements and is effective for lowering cholesterol and LDL-cholesterol and increasing HDL-cholesterol levels so that it is effective in treating hypercholesterolemia. Consequently the composition may be used to reduce the risk of coronary heart disease, to inhibit the atherosclerotic process (platelet hyperaggregability, ischemia and thrombosis) and also to act as an anti-inflammatory and anti-thrombotic agent. The composition also possesses neurotrophic properties and is useful for improving male sexual activity.
Abstract:
The present invention relates to a naturally obtained mixture of higher molecular weight primary aliphatic alcohols which contain 20 to 34 carbon atoms. This invention also relates to the process for obtaining the alcohol mixture by extraction and purification with organic solvents from a natural product, such as beeswax with and without saponification of the natural product. The alcohol mixture obtained from beeswax has enhanced purity and contains a mixture of alcohols having 20, 22, 24, 26, 27, 28, 30, 32 and 34 carbon atoms. The alcohol mixture is useful in pharmaceutical compositions, foodstuffs and dietary supplements and is effective for lowering cholesterol levels so that it is effective in treating hypercholesterolemia.
Abstract:
The invention provides methods for separating outer birch bark from inner birch bark. The invention also provides methods for isolating betulin; lupeol; betulinic acid; 9,10-epoxy-18-hydroxyoctadecanoic acid; 9,10,18trihydroxyoctadecanoic acid; polyphenolic polymers and fatty acids from birch bark.
Abstract:
A process for producing a polyol by reacting an aliphatic aldehyde with formaldehyde in the presence of a basic catalyst, which comprises a step of concentration which comprises removing water and unreacted formaldehyde from a reaction liquid by distillation; a step of extraction which comprises extracting the polyol from a concentrated reaction liquid with an extracting reagent; a step of washing with water which comprises washing an extract liquid with water and separating the liquid into an oil layer containing the polyol and an aqueous layer; wherein by useing an specific aliphatic aldehyde as the extracting agent and recovering the extracting reagent from the oil layer containing the polyol after adjusting pH of the oil layer, a high purity polyhydric alcohol can be obtained at a high yield with suppressed formation of byproducts such as acetal compounds and aldol compounds.
Abstract:
Disclosed is a process for acquiring crude trimethylolpropane (TMP) of low reacted color. TMP is generally prepared by the condensation of n-butyraldehyde and formaldehyde in an alkali solution. The mixture is then concentrated and placed through an extractor. It has been found that a high concentration of low color TMP is present in the extractor and may by obtained by taking a slip stream of hot organic/water/TMP from the extractor and allowing the mixture to cool and phase separate. Upon separation of the phases, TMP generally having an acid wash color of about or less than 5 GU is recovered from the water phase. Disclosed is use of a single and multistage extractor.
Abstract:
High purity isopropyl acetate and ethanol are recovered from a process stream containing isopropyl acetate, ethanol and water by a multiple step process including extracting substantially all of the ethanol from the stream using water as a solvent, stripping the extract stream to remove substantially all of the remaining isopropyl acetate as an overhead recycle stream, which is combined with the fresh feed stream prior to the extraction step, fractionating the ethanol-rich stripping column bottoms stream to produce a ethanol-water azeotropic overhead stream and using a portion of the fractionating column bottoms stream as the solvent for the extraction step.