Abstract:
The present disclosure relates to the technical field of chemical engineering, and specifically discloses a method for removing oxygenated compounds from a Fischer-Tropsch oil having a high carbon number. A reaction-extraction combined process is used in this method for removing oxygenated compounds from a Fischer-Tropsch oil having a high carbon number, wherein the Fischer-Tropsch oil (C5-C20) is firstly subjected to alkaline washing with an alkaline aqueous solution to convert acidic substances into water-soluble salts. The Fischer-Tropsch oil is subjected to a primary extraction with a carbonate-based extractant to remove alcohols and esters therein, and subsequently subjected to a secondary extraction with propylene carbonate to remove ketones and aldehydes impurities therein, thereby removing oxygenated compounds in the Fischer-Tropsch oil. After extraction, the content of the oxygenated compounds in the Fischer-Tropsch oil may be down to 1-60 ppm, and the yield of oil product may be kept 90% or more.
Abstract:
The present technology provides a process that includes heating a first mixture of elemental sulfur and particles comprising an alkali metal sulfide in a liquid hydrocarbon to a temperature of at least 150° C., to provide a sulfur-treated mixture comprising agglomerated particles; and separating the agglomerated particles from the sulfur-treated mixture to provide a desulfurized liquid hydrocarbon and separated solids. This process may be used as part of a suite of processes for desulfurizing liquid hydrocarbons contaminated with organosulfur compounds and other heteroatom-based contaminants. The present technology further provides processes for converting carbon-rich solids (e.g., petroleum coke) into fuels.
Abstract:
A reaction system and method for removing heteroatoms from oxidized-heteroatom-containing hydrocarbon streams and products derived therefrom are disclosed. An oxidized-heteroatom-containing hydrocarbon feed is reacted in a reaction system thereby forming non-ionic hydrocarbon products. The products derived therefrom are useful as transportation fuels, lubricants, refinery intermediates, or refinery feeds.
Abstract:
The invention relates to a process for removing sulfur compounds from a hydrocarbon stream. The hydrocarbon stream is contacted with water, at supercritical conditions and also subjects an effluent hydrocarbon stream to separation techniques. The resulting hydrocarbon stream is substantially free of sulfur oxides, sulfoxides, and sulfones.
Abstract:
A process to facilitate gravimetric separation of alkali metal salts, such as alkali metal sulfides and polysulfides, from alkali metal reacted hydrocarbons. The disclosed process is part of a method of upgrading a hydrocarbon feedstock by removing heteroatoms and/or one or more heavy metals from the hydrocarbon feedstock composition. This method reacts the oil feedstock with an alkali metal and an upgradant hydrocarbon. The alkali metal reacts with a portion of the heteroatoms and/or one or more heavy metals to form an inorganic phase containing alkali metal salts and reduced heavy metals, and an upgraded hydrocarbon feedstock. The inorganic phase may be gravimetrically separated from the upgraded hydrocarbon feedstock after mixing at a temperature between about 350° C. to 400° C. for a time period between about 15 minutes and 2 hours.
Abstract:
A system for removing contaminants from both liquid and gaseous hydrocarbon streams and methods thereof are described. An additive that reacts with said contaminant to form water-soluble compounds is injected into the hydrocarbon streams
Abstract:
Methods for processing algal oils are provided. In an embodiment, a method for removing a contaminant from an oil includes contacting the oil with a base to form an intermediate solution. Further, the method includes contacting the intermediate solution with an acid to form an acidic solution. The method separates the acidic solution into an oil portion and an aqueous waste portion including the contaminant.
Abstract:
Methods and systems of treating petroleum feedstock contaminated with naphthenic acids and sulfur are disclosed. The methods and systems include heating the petroleum feedstock to decompose the naphthenic acids, pressurizing to minimize the portion in the vapor phase, sweeping water vapor and carbon dioxide into a headspace with a non-oxidizing gas, removing water vapor and carbon dioxide from the headspace, reacting the sulfur with an alkali metal and a radical capping gas to convert the sulfur into alkali sulfides, and removing the alkali sulfides. Also disclosed is reacting the naphthenic acid with water and an oxide or hydroxide of an alkaline earth element to convert the naphthenic acid into naphthenates, removing water, ketonizing, removing oxides or carbonates, reacting the sulfur with an alkali metal and a radical capping gas to convert the sulfur into alkali sulfides, and removing the alkali sulfides.
Abstract:
A process for removing gases from a sweetened hydrocarbon stream. The process can include passing the sweetened hydrocarbon stream to a gas removal zone, contacting the sweetened hydrocarbon stream with an aqueous stream, passing the aqueous stream to the degassing drum, and removing gases including at least one of oxygen and nitrogen from the aqueous stream. Often, the gas removal zone includes a degassing drum.