Abstract:
The present invention relates to a novel method of producing a compound of Formula (I) from a compound of formula (II) by a novel cyclisation process, as well as a method of producing an acid adduct of the compound of Formula (I) wherein L represents a leaving group, and R represents hydrogen, a substituted or unsubstituted linear, branched and/or cyclic alkyl group that may contain one or more hetero atoms in the linear, branched and/or cyclic alkyl chain, a substituted or unsubstituted aromatic or heteroaromatic group, a substituted or unsubstituted linear, branched and/or cyclic aralkyl or heteroaromatic alkyl group that may contain one or more hetero atoms in the linear, branched and/or cyclic alkanediyl chain, or a substituted or unsubstituted alkylaryl or alkyl heteroaromatic group with at least one linear, branched and/or cyclic alkyl residue that may contain one or more hetero atoms in the linear, branched and/or cyclic alkyl chain.
Abstract:
Provided is a method for producing a cyclic olefin compound, including a step of producing a cyclic olefin compound by acting a divalent nickel complex represented by General Formula (1) to decarbonylate and decarboxylate an alicyclic dicarboxylic acid anhydride, in which the divalent nickel complex includes at least one specific anionic ligand Y:
Ni(Y)m(L)n (1)
wherein Ni is divalent nickel, Y is an anionic monodentate or polydentate ligand and has at least one Ni-E covalent bond, E is a heteroatom or a n-bonding group, m is 1 or 2, L is a neutral ligand, and n is a real number of 0 to 6.
Abstract:
A catalyst composition for hydrogenation including (A) to (D), in which a mass ratio ((C)/(A)) is 0.1 to 4.0 and a mass ratio ((D)/(A)) is 0.01 to 1.00, (A): a titanocene compound represented by formula (1), (wherein R5 and R6 are any group selected from hydrogen, a hydrocarbon group having 1 to 12 carbon atoms, an aryloxy group, an alkoxy group, a halogen group, and a carbonyl group. R1 and R2 are any group selected from the group consisting of hydrogen and a hydrocarbon group having 1 to 12 carbon atoms, and R1 and R2 are not all hydrogen atoms or all a hydrocarbon group having 1 to 12 carbon atoms), (B): a reductant formed from a compound containing an element selected from the elements Li, Na, K, Mg, Zn, Al, and Ca, (C): an unsaturated compound having a molecular weight of 400 or less, and (D): a polar compound.
Abstract:
In one embodiment, the application discloses a composition for the reduction of an organic compound comprising a nitro group to form an organic compound comprising an amine group, the composition comprising: a) a transition metal salt; b) an iron salt; and c) a reducing agent; and methods for the use of such compositions, including Click chemistry and cross coupling reactions.
Abstract:
To provide a catalyst having hydrotreatment (hydrogenation, desulfurization and denitrification) performance that is equal to or superior to the prior art, as a hydrotreating catalyst for hydrocarbon oils, and a hydrotreating process for hydrocarbon oils using the catalyst. The catalyst comprises 10 to 40 mass % of at least one element of Group 6 of the Periodic Table, 0.5 to 15 mass % of at least one element of Groups 8 to 10 of the Periodic Table based on the oxide catalysts, and a 0.05- to 3-fold amount of an organic additive with respect to the total number of moles of the elements of Group 6 and Groups 8 to 10 of the Periodic Table, added to an inorganic porous support composed mainly of silica-alumina that comprises an oxide of a metal of Group 2 of the Periodic Table.
Abstract:
The purpose of the invention is to provide a novel organometallic compound that can be utilized as a catalyst having high generality, high activity, and excellent functional group selectivity. The invention pertains to a novel organometallic compound represented by general formula (1) that catalyzes a reductive amination reaction.
Abstract:
This invention relates to a vertically aligned mesoporous silicate film with site-selective metal deposition from a single polymeric precursor and to diverse catalytic applications thereof. There is an innovative approach of a single precursor to manufacture a vertically aligned mesoporous silicate thin film having high thermal and chemical resistance on a large-area silicon wafer (2 cm×3 cm). A precisely designed organic-inorganic block copolymer (BCP) polyethyleneoxide-ss-polyvinylcyclicsilazane (PEO-ss-PVCSZ) with a disulfide bridge that is chemically cleavable is newly synthesized as the single precursor for an oriented silicate nanoporous film, and using such a precursor, solvent annealing, self-assembling, block cleaving treatment, and then hydrolysis conversion of a polymer into a siliceous phase at room temperature are carried out, thus directly forming a mesostructure on the substrate.
Abstract:
The present invention is a method for producing an aromatic compound by substituting the sulfonic acid group in a sulfonic acid aromatic-ester with a hydrogen atom in the presence of a platinum group metal catalyst, wherein an alkali metal carboxylate and/or an ammonium formate are made to coexist in the system. According to the present invention, an aromatic compound where the sulfonic acid group in a sulfonic acid aromatic-ester is substituted with a hydrogen atom, can be produced efficiently with good operability without using metal magnesium.
Abstract:
The present invention relates to a method for preparing an optically active cyclic alcohol compound represented by general formula [I]: [wherein R represents a hydrogen atom or a protecting group for amino group, and * represents an astymmetric carbon atom.] which comprises a step of subjecting a cyclic ketone compound represented by general formula [II]: [wherein R has the same meaning as defined above.]to asymmetric reduction (A) in the presence of an optically active oxazaborolidine compound and a boron hydride compound, or (B) in the presence of an asymmetric transition metal complex obtained from a transition metal compound and an asymmetric ligand and a hydrogen donor, and relates to said compound.
Abstract:
Problem To provide a method for producing an arylhydroxylamine compound efficiently and safely under mild conditions.Means for Solving the Problem The present invention relates to a method for producing anarylhydroxylamine compound, which comprises contacting a nitroaryl compound with a hydrogen source in the coexistence of a platinum catalyst supported on amino group-coordinated silica and a poisoning agent.