Abstract:
The present invention relates to a process for producing polymeric structures that have activated surfaces. The process proved to be simple, quick, with high production capacity and low operating costs. The process occurs by depositing a polymer solution, which is assisted by a high electric field, on a conductive liquid surface to produce particles and/or filaments that have an activated surface. More particularly, the process of the present invention has the ability to produce particles and/or filaments that have chemically activated surfaces, in a single process.
Abstract:
Fibers can be formed from monomers derived from a biorenewable source. In an embodiment, a fiber forming composition that includes a monomer or mixture of monomers with at least one monomer being derived from a biorenewable source in placed in a fiber producing device. At least a portion of the fiber forming composition is ejected through an opening of the fiber forming device. The ejected fiber forming composition is subjected to light at wavelengths sufficient to activate a reaction which causes solidification of the fiber as the fibers are ejected from the fiber producing device.
Abstract:
The present invention relates to a process for producing water-absorbing polymer fibers, especially micro-or nanofibers, by electrospinning process and to fibers obtainable by this process.
Abstract:
Disclosed herein is a method for producing a sheet including a silica aerogel, the method including (S1) gelling a water glass solution in a mixture of an alcohol and water to prepare a wet gel, (S2) hydrophobically modifying the surface of the wet gel with a non-polar organic solvent, an organosilane compound and an alcohol, (S3) dissolving the hydrophobically modified silica gel and a polymer in an aprotic organic solvent to prepare an electrospinning solution, and (S4) electrospinning the electrospinning solution to produce a fiber web including a silica aerogel, and a sheet in which a polymer and a silica aerogel coexist in the form of a fiber.
Abstract:
Polymeric fibers and methods of making the polymeric fibers are described. The polymeric fibers are crosslinked hydrogels or dried hydrogels that are prepared from a precursor composition that contains polymerizable material having an average number of ethylenically unsaturated groups per monomer molecule greater than 1.0. The polymeric fibers can contain an optional active agent.
Abstract:
A process to make a dyed fiber which has the steps of mixing a dye capable of changing color and a polymer into a solution at a temperature below the temperature at which the dye or polymer degrades to form a polymer dye solution and electrospinning said polymer dye solution to form a fiber wherein the dye penetrates more than the surface of the fiber. The invention also relates to the fiber and use of the fiber.
Abstract:
The present invention provides a nanoporous fiber being substantially free from coarse pores and having homogeneously dispersed nanopores, unlike conventional porous fibers. A porous fiber has pores each having a diameter of 100 nm or less, in which the area ratio of pores each having a diameter of 200 nm or more to the total cross section of the fiber is 1.5% or less, and the pores are unconnected pores, or a porous fiber has pores each having a diameter of 100 nm or less, in which the area ratio of pores each having a diameter of 200 nm or more to the total cross section of the fiber is 1.5% or less, the pores are connected pores, and the fiber has a strength of 1.0 cN/dtex or more.
Abstract:
The present invention provides a nanoporous fiber being substantially free from coarse pores and having homogeneously dispersed nanopores, unlike conventional porous fibers. A porous fiber has pores each having a diameter of 100 nm or less, in which the area ratio of pores each having a diameter of 200 nm or more to the total cross section of the fiber is 1.5% or less, and the pores are unconnected pores, or a porous fiber has pores each having a diameter of 100 nm or less, in which the area ratio of pores each having a diameter of 200 nm or more to the total cross section of the fiber is 1.5% or less, the pores are connected pores, and the fiber has a strength of 1.0 cN/dtex or more.
Abstract:
Water swellable absorbent articles, made from carboxylic polyelectrolytes, together with methods for their preparation, and a composition useful to make said articles are disclosed. The articles are crosslinked by heating and/or removing substantially all of the water from the precursor composition.The absorbent articles are useful as surgical sponges, diapers, tampons, meat trays, bath mats and the like.